The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients

We attempted to find a way to distinguish survivors and non-survivors on the basis of the differences in the dynamics in both patient classes using multivariate autoregressive (MAR) time series analysis techniques. Time series data of 11 physiological variables were used to calculate MAR models. Dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Van Loon, Kristien, Aerts, Jean-Marie, Meyfroidt, Geert, Van den Berghe, Greta, Berckmans, Daniel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 297
container_issue
container_start_page 285
container_title
container_volume
creator Van Loon, Kristien
Aerts, Jean-Marie
Meyfroidt, Geert
Van den Berghe, Greta
Berckmans, Daniel
description We attempted to find a way to distinguish survivors and non-survivors on the basis of the differences in the dynamics in both patient classes using multivariate autoregressive (MAR) time series analysis techniques. Time series data of 11 physiological variables were used to calculate MAR models. Data were taken from a subset of patients, with an intensive care unit length of stay of at least 20 days, from a database of a previously published randomized controlled trial [1]. The methodology was developed on 20 and validated on 16 patients. Based on the MAR coefficients, impulse response curves were simulated to describe the contributions of a single variable to fluctuations in another. The impulse responses of non-survivors had a tendency to be either more instable or to return to the initial level after a longer time than the responses of survivors did. This allowed us to distinguish survivors from non-survivors in the development cohort with a sensitivity of 0.70 and a selectivity of 1.00. This result was confirmed in the validation set where a sensitivity of 0.63 and a selectivity of 1.00 were reached.
doi_str_mv 10.1007/11946465_26
format Conference Proceeding
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11946465_26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11946465_26</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-19d1323fe24d6e7267e8a357988efdf2bfe0824a9a167787a32e991b37874e543</originalsourceid><addsrcrecordid>eNpVUMtOwzAQNC-JqvTED_jKIeBX_DhWhUKlViDUniOXbFqDiavYrRQ-gO8mAQ6wl93ZnR2NBqFLSq4pIeqGUiOkkHnB5BEaGaV5LojURObmGA2opDTjXJiTfzeen6IB4YRlRgl-jkYxvpKuOJXCiAH6XG4BryLgUOHF3id3sI2zCfB4n0IDmwZidAfAi1CC967e4Co0eFxb33706Lat7bt7sR4_bdvogg-bb_QMcRfqCLEXntWlO7hy3-0njUs9wbd45rsnmxzUKV6gs8r6CKPfPkSr6d1y8pDNH-9nk_E8i1SblFFTUs54BUyUEhSTCrTluTJaQ1VWbF0B0UxYY6lUSivLGRhD17ybBeSCD9HVj27cNZ19aIp1CG-xoKToMy7-ZMy_AMRJa0s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients</title><source>Springer Books</source><creator>Van Loon, Kristien ; Aerts, Jean-Marie ; Meyfroidt, Geert ; Van den Berghe, Greta ; Berckmans, Daniel</creator><contributor>Brause, Rüdiger ; Chouvarda, Ioanna ; Koutkias, Vassilis ; Maglaveras, Nicos</contributor><creatorcontrib>Van Loon, Kristien ; Aerts, Jean-Marie ; Meyfroidt, Geert ; Van den Berghe, Greta ; Berckmans, Daniel ; Brause, Rüdiger ; Chouvarda, Ioanna ; Koutkias, Vassilis ; Maglaveras, Nicos</creatorcontrib><description>We attempted to find a way to distinguish survivors and non-survivors on the basis of the differences in the dynamics in both patient classes using multivariate autoregressive (MAR) time series analysis techniques. Time series data of 11 physiological variables were used to calculate MAR models. Data were taken from a subset of patients, with an intensive care unit length of stay of at least 20 days, from a database of a previously published randomized controlled trial [1]. The methodology was developed on 20 and validated on 16 patients. Based on the MAR coefficients, impulse response curves were simulated to describe the contributions of a single variable to fluctuations in another. The impulse responses of non-survivors had a tendency to be either more instable or to return to the initial level after a longer time than the responses of survivors did. This allowed us to distinguish survivors from non-survivors in the development cohort with a sensitivity of 0.70 and a selectivity of 1.00. This result was confirmed in the validation set where a sensitivity of 0.63 and a selectivity of 1.00 were reached.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540680635</identifier><identifier>ISBN: 3540680632</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540680659</identifier><identifier>EISBN: 3540680659</identifier><identifier>DOI: 10.1007/11946465_26</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>critical care ; mortality ; multivariate time series analysis ; outcome prediction</subject><ispartof>Biological and Medical Data Analysis, 2006, p.285-297</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11946465_26$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11946465_26$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Brause, Rüdiger</contributor><contributor>Chouvarda, Ioanna</contributor><contributor>Koutkias, Vassilis</contributor><contributor>Maglaveras, Nicos</contributor><creatorcontrib>Van Loon, Kristien</creatorcontrib><creatorcontrib>Aerts, Jean-Marie</creatorcontrib><creatorcontrib>Meyfroidt, Geert</creatorcontrib><creatorcontrib>Van den Berghe, Greta</creatorcontrib><creatorcontrib>Berckmans, Daniel</creatorcontrib><title>The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients</title><title>Biological and Medical Data Analysis</title><description>We attempted to find a way to distinguish survivors and non-survivors on the basis of the differences in the dynamics in both patient classes using multivariate autoregressive (MAR) time series analysis techniques. Time series data of 11 physiological variables were used to calculate MAR models. Data were taken from a subset of patients, with an intensive care unit length of stay of at least 20 days, from a database of a previously published randomized controlled trial [1]. The methodology was developed on 20 and validated on 16 patients. Based on the MAR coefficients, impulse response curves were simulated to describe the contributions of a single variable to fluctuations in another. The impulse responses of non-survivors had a tendency to be either more instable or to return to the initial level after a longer time than the responses of survivors did. This allowed us to distinguish survivors from non-survivors in the development cohort with a sensitivity of 0.70 and a selectivity of 1.00. This result was confirmed in the validation set where a sensitivity of 0.63 and a selectivity of 1.00 were reached.</description><subject>critical care</subject><subject>mortality</subject><subject>multivariate time series analysis</subject><subject>outcome prediction</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540680635</isbn><isbn>3540680632</isbn><isbn>9783540680659</isbn><isbn>3540680659</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNpVUMtOwzAQNC-JqvTED_jKIeBX_DhWhUKlViDUniOXbFqDiavYrRQ-gO8mAQ6wl93ZnR2NBqFLSq4pIeqGUiOkkHnB5BEaGaV5LojURObmGA2opDTjXJiTfzeen6IB4YRlRgl-jkYxvpKuOJXCiAH6XG4BryLgUOHF3id3sI2zCfB4n0IDmwZidAfAi1CC967e4Co0eFxb33706Lat7bt7sR4_bdvogg-bb_QMcRfqCLEXntWlO7hy3-0njUs9wbd45rsnmxzUKV6gs8r6CKPfPkSr6d1y8pDNH-9nk_E8i1SblFFTUs54BUyUEhSTCrTluTJaQ1VWbF0B0UxYY6lUSivLGRhD17ybBeSCD9HVj27cNZ19aIp1CG-xoKToMy7-ZMy_AMRJa0s</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Van Loon, Kristien</creator><creator>Aerts, Jean-Marie</creator><creator>Meyfroidt, Geert</creator><creator>Van den Berghe, Greta</creator><creator>Berckmans, Daniel</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients</title><author>Van Loon, Kristien ; Aerts, Jean-Marie ; Meyfroidt, Geert ; Van den Berghe, Greta ; Berckmans, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-19d1323fe24d6e7267e8a357988efdf2bfe0824a9a167787a32e991b37874e543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>critical care</topic><topic>mortality</topic><topic>multivariate time series analysis</topic><topic>outcome prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Loon, Kristien</creatorcontrib><creatorcontrib>Aerts, Jean-Marie</creatorcontrib><creatorcontrib>Meyfroidt, Geert</creatorcontrib><creatorcontrib>Van den Berghe, Greta</creatorcontrib><creatorcontrib>Berckmans, Daniel</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Loon, Kristien</au><au>Aerts, Jean-Marie</au><au>Meyfroidt, Geert</au><au>Van den Berghe, Greta</au><au>Berckmans, Daniel</au><au>Brause, Rüdiger</au><au>Chouvarda, Ioanna</au><au>Koutkias, Vassilis</au><au>Maglaveras, Nicos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients</atitle><btitle>Biological and Medical Data Analysis</btitle><date>2006</date><risdate>2006</risdate><spage>285</spage><epage>297</epage><pages>285-297</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540680635</isbn><isbn>3540680632</isbn><eisbn>9783540680659</eisbn><eisbn>3540680659</eisbn><abstract>We attempted to find a way to distinguish survivors and non-survivors on the basis of the differences in the dynamics in both patient classes using multivariate autoregressive (MAR) time series analysis techniques. Time series data of 11 physiological variables were used to calculate MAR models. Data were taken from a subset of patients, with an intensive care unit length of stay of at least 20 days, from a database of a previously published randomized controlled trial [1]. The methodology was developed on 20 and validated on 16 patients. Based on the MAR coefficients, impulse response curves were simulated to describe the contributions of a single variable to fluctuations in another. The impulse responses of non-survivors had a tendency to be either more instable or to return to the initial level after a longer time than the responses of survivors did. This allowed us to distinguish survivors from non-survivors in the development cohort with a sensitivity of 0.70 and a selectivity of 1.00. This result was confirmed in the validation set where a sensitivity of 0.63 and a selectivity of 1.00 were reached.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11946465_26</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Biological and Medical Data Analysis, 2006, p.285-297
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11946465_26
source Springer Books
subjects critical care
mortality
multivariate time series analysis
outcome prediction
title The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Use%20of%20Multivariate%20Autoregressive%20Modelling%20for%20Analyzing%20Dynamical%20Physiological%20Responses%20of%20Individual%20Critically%20Ill%20Patients&rft.btitle=Biological%20and%20Medical%20Data%20Analysis&rft.au=Van%20Loon,%20Kristien&rft.date=2006&rft.spage=285&rft.epage=297&rft.pages=285-297&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540680635&rft.isbn_list=3540680632&rft_id=info:doi/10.1007/11946465_26&rft_dat=%3Cspringer%3Espringer_books_10_1007_11946465_26%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540680659&rft.eisbn_list=3540680659&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true