The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients
We attempted to find a way to distinguish survivors and non-survivors on the basis of the differences in the dynamics in both patient classes using multivariate autoregressive (MAR) time series analysis techniques. Time series data of 11 physiological variables were used to calculate MAR models. Dat...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 297 |
---|---|
container_issue | |
container_start_page | 285 |
container_title | |
container_volume | |
creator | Van Loon, Kristien Aerts, Jean-Marie Meyfroidt, Geert Van den Berghe, Greta Berckmans, Daniel |
description | We attempted to find a way to distinguish survivors and non-survivors on the basis of the differences in the dynamics in both patient classes using multivariate autoregressive (MAR) time series analysis techniques. Time series data of 11 physiological variables were used to calculate MAR models. Data were taken from a subset of patients, with an intensive care unit length of stay of at least 20 days, from a database of a previously published randomized controlled trial [1]. The methodology was developed on 20 and validated on 16 patients. Based on the MAR coefficients, impulse response curves were simulated to describe the contributions of a single variable to fluctuations in another. The impulse responses of non-survivors had a tendency to be either more instable or to return to the initial level after a longer time than the responses of survivors did. This allowed us to distinguish survivors from non-survivors in the development cohort with a sensitivity of 0.70 and a selectivity of 1.00. This result was confirmed in the validation set where a sensitivity of 0.63 and a selectivity of 1.00 were reached. |
doi_str_mv | 10.1007/11946465_26 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11946465_26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11946465_26</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-19d1323fe24d6e7267e8a357988efdf2bfe0824a9a167787a32e991b37874e543</originalsourceid><addsrcrecordid>eNpVUMtOwzAQNC-JqvTED_jKIeBX_DhWhUKlViDUniOXbFqDiavYrRQ-gO8mAQ6wl93ZnR2NBqFLSq4pIeqGUiOkkHnB5BEaGaV5LojURObmGA2opDTjXJiTfzeen6IB4YRlRgl-jkYxvpKuOJXCiAH6XG4BryLgUOHF3id3sI2zCfB4n0IDmwZidAfAi1CC967e4Co0eFxb33706Lat7bt7sR4_bdvogg-bb_QMcRfqCLEXntWlO7hy3-0njUs9wbd45rsnmxzUKV6gs8r6CKPfPkSr6d1y8pDNH-9nk_E8i1SblFFTUs54BUyUEhSTCrTluTJaQ1VWbF0B0UxYY6lUSivLGRhD17ybBeSCD9HVj27cNZ19aIp1CG-xoKToMy7-ZMy_AMRJa0s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients</title><source>Springer Books</source><creator>Van Loon, Kristien ; Aerts, Jean-Marie ; Meyfroidt, Geert ; Van den Berghe, Greta ; Berckmans, Daniel</creator><contributor>Brause, Rüdiger ; Chouvarda, Ioanna ; Koutkias, Vassilis ; Maglaveras, Nicos</contributor><creatorcontrib>Van Loon, Kristien ; Aerts, Jean-Marie ; Meyfroidt, Geert ; Van den Berghe, Greta ; Berckmans, Daniel ; Brause, Rüdiger ; Chouvarda, Ioanna ; Koutkias, Vassilis ; Maglaveras, Nicos</creatorcontrib><description>We attempted to find a way to distinguish survivors and non-survivors on the basis of the differences in the dynamics in both patient classes using multivariate autoregressive (MAR) time series analysis techniques. Time series data of 11 physiological variables were used to calculate MAR models. Data were taken from a subset of patients, with an intensive care unit length of stay of at least 20 days, from a database of a previously published randomized controlled trial [1]. The methodology was developed on 20 and validated on 16 patients. Based on the MAR coefficients, impulse response curves were simulated to describe the contributions of a single variable to fluctuations in another. The impulse responses of non-survivors had a tendency to be either more instable or to return to the initial level after a longer time than the responses of survivors did. This allowed us to distinguish survivors from non-survivors in the development cohort with a sensitivity of 0.70 and a selectivity of 1.00. This result was confirmed in the validation set where a sensitivity of 0.63 and a selectivity of 1.00 were reached.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540680635</identifier><identifier>ISBN: 3540680632</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540680659</identifier><identifier>EISBN: 3540680659</identifier><identifier>DOI: 10.1007/11946465_26</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>critical care ; mortality ; multivariate time series analysis ; outcome prediction</subject><ispartof>Biological and Medical Data Analysis, 2006, p.285-297</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11946465_26$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11946465_26$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Brause, Rüdiger</contributor><contributor>Chouvarda, Ioanna</contributor><contributor>Koutkias, Vassilis</contributor><contributor>Maglaveras, Nicos</contributor><creatorcontrib>Van Loon, Kristien</creatorcontrib><creatorcontrib>Aerts, Jean-Marie</creatorcontrib><creatorcontrib>Meyfroidt, Geert</creatorcontrib><creatorcontrib>Van den Berghe, Greta</creatorcontrib><creatorcontrib>Berckmans, Daniel</creatorcontrib><title>The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients</title><title>Biological and Medical Data Analysis</title><description>We attempted to find a way to distinguish survivors and non-survivors on the basis of the differences in the dynamics in both patient classes using multivariate autoregressive (MAR) time series analysis techniques. Time series data of 11 physiological variables were used to calculate MAR models. Data were taken from a subset of patients, with an intensive care unit length of stay of at least 20 days, from a database of a previously published randomized controlled trial [1]. The methodology was developed on 20 and validated on 16 patients. Based on the MAR coefficients, impulse response curves were simulated to describe the contributions of a single variable to fluctuations in another. The impulse responses of non-survivors had a tendency to be either more instable or to return to the initial level after a longer time than the responses of survivors did. This allowed us to distinguish survivors from non-survivors in the development cohort with a sensitivity of 0.70 and a selectivity of 1.00. This result was confirmed in the validation set where a sensitivity of 0.63 and a selectivity of 1.00 were reached.</description><subject>critical care</subject><subject>mortality</subject><subject>multivariate time series analysis</subject><subject>outcome prediction</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540680635</isbn><isbn>3540680632</isbn><isbn>9783540680659</isbn><isbn>3540680659</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNpVUMtOwzAQNC-JqvTED_jKIeBX_DhWhUKlViDUniOXbFqDiavYrRQ-gO8mAQ6wl93ZnR2NBqFLSq4pIeqGUiOkkHnB5BEaGaV5LojURObmGA2opDTjXJiTfzeen6IB4YRlRgl-jkYxvpKuOJXCiAH6XG4BryLgUOHF3id3sI2zCfB4n0IDmwZidAfAi1CC967e4Co0eFxb33706Lat7bt7sR4_bdvogg-bb_QMcRfqCLEXntWlO7hy3-0njUs9wbd45rsnmxzUKV6gs8r6CKPfPkSr6d1y8pDNH-9nk_E8i1SblFFTUs54BUyUEhSTCrTluTJaQ1VWbF0B0UxYY6lUSivLGRhD17ybBeSCD9HVj27cNZ19aIp1CG-xoKToMy7-ZMy_AMRJa0s</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Van Loon, Kristien</creator><creator>Aerts, Jean-Marie</creator><creator>Meyfroidt, Geert</creator><creator>Van den Berghe, Greta</creator><creator>Berckmans, Daniel</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients</title><author>Van Loon, Kristien ; Aerts, Jean-Marie ; Meyfroidt, Geert ; Van den Berghe, Greta ; Berckmans, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-19d1323fe24d6e7267e8a357988efdf2bfe0824a9a167787a32e991b37874e543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>critical care</topic><topic>mortality</topic><topic>multivariate time series analysis</topic><topic>outcome prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Loon, Kristien</creatorcontrib><creatorcontrib>Aerts, Jean-Marie</creatorcontrib><creatorcontrib>Meyfroidt, Geert</creatorcontrib><creatorcontrib>Van den Berghe, Greta</creatorcontrib><creatorcontrib>Berckmans, Daniel</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Loon, Kristien</au><au>Aerts, Jean-Marie</au><au>Meyfroidt, Geert</au><au>Van den Berghe, Greta</au><au>Berckmans, Daniel</au><au>Brause, Rüdiger</au><au>Chouvarda, Ioanna</au><au>Koutkias, Vassilis</au><au>Maglaveras, Nicos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients</atitle><btitle>Biological and Medical Data Analysis</btitle><date>2006</date><risdate>2006</risdate><spage>285</spage><epage>297</epage><pages>285-297</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540680635</isbn><isbn>3540680632</isbn><eisbn>9783540680659</eisbn><eisbn>3540680659</eisbn><abstract>We attempted to find a way to distinguish survivors and non-survivors on the basis of the differences in the dynamics in both patient classes using multivariate autoregressive (MAR) time series analysis techniques. Time series data of 11 physiological variables were used to calculate MAR models. Data were taken from a subset of patients, with an intensive care unit length of stay of at least 20 days, from a database of a previously published randomized controlled trial [1]. The methodology was developed on 20 and validated on 16 patients. Based on the MAR coefficients, impulse response curves were simulated to describe the contributions of a single variable to fluctuations in another. The impulse responses of non-survivors had a tendency to be either more instable or to return to the initial level after a longer time than the responses of survivors did. This allowed us to distinguish survivors from non-survivors in the development cohort with a sensitivity of 0.70 and a selectivity of 1.00. This result was confirmed in the validation set where a sensitivity of 0.63 and a selectivity of 1.00 were reached.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11946465_26</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Biological and Medical Data Analysis, 2006, p.285-297 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_11946465_26 |
source | Springer Books |
subjects | critical care mortality multivariate time series analysis outcome prediction |
title | The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Use%20of%20Multivariate%20Autoregressive%20Modelling%20for%20Analyzing%20Dynamical%20Physiological%20Responses%20of%20Individual%20Critically%20Ill%20Patients&rft.btitle=Biological%20and%20Medical%20Data%20Analysis&rft.au=Van%20Loon,%20Kristien&rft.date=2006&rft.spage=285&rft.epage=297&rft.pages=285-297&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540680635&rft.isbn_list=3540680632&rft_id=info:doi/10.1007/11946465_26&rft_dat=%3Cspringer%3Espringer_books_10_1007_11946465_26%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540680659&rft.eisbn_list=3540680659&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |