Real-Time Model-Based SLAM Using Line Segments

Existing monocular vision-based SLAM systems favour interest point features as landmarks, but these are easily occluded and can only be reliably matched over a narrow range of viewpoints. Line segments offer an interesting alternative, as line matching is more stable with respect to viewpoint change...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gee, Andrew P., Mayol-Cuevas, Walterio
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue
container_start_page 354
container_title
container_volume
creator Gee, Andrew P.
Mayol-Cuevas, Walterio
description Existing monocular vision-based SLAM systems favour interest point features as landmarks, but these are easily occluded and can only be reliably matched over a narrow range of viewpoints. Line segments offer an interesting alternative, as line matching is more stable with respect to viewpoint changes and lines are robust to partial occlusion. In this paper we present a model-based SLAM system that uses 3D line segments as landmarks. Unscented Kalman filters are used to initialise new line segments and generate a 3D wireframe model of the scene that can be tracked with a robust model-based tracking algorithm. Uncertainties in the camera position are fed into the initialisation of new model edges. Results show the system operating in real-time with resilience to partial occlusion. The maps of line segments generated during the SLAM process are physically meaningful and their structure is measured against the true 3D structure of the scene.
doi_str_mv 10.1007/11919629_37
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_springer_books_10_1007_11919629_37</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20046609</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-ddf9348dab4da9934c2108a801d15624c3776026656bf659fa602c5ec8369f8f3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1LopSe-AO5cODgsutnfCwVLykVEm3PlhPbUSBNo7gX_j1BRYK9zI6-0Uo7hNwgzBFA3yMaNIoZy_UJueJSgMgV0_KUTFAhUs6FOfsDSp-TCXBg1GjBL8kspQ8YRxiUEiZk_h5cSzfNLmSrvQ8tfXAp-GxdLFbZNjVdnRVNF7J1qHehO6RrchFdm8LsV6dk-_S4Wb7Q4u35dbkoaM_QHKj30XCRe1cK78y4VgwhdzmgR6mYqLjWCphSUpVRSRPd6CoZqpwrE_PIp-T2eLd3qXJtHFxXNcn2Q7Nzw5dl4wNKgRlzd8dcGlFXh8GW-_1nsgj2py37ry3-DcVqU-I</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real-Time Model-Based SLAM Using Line Segments</title><source>Springer Books</source><creator>Gee, Andrew P. ; Mayol-Cuevas, Walterio</creator><contributor>Zara, Jiri ; Remagnino, Paolo ; Bebis, George ; Koracin, Darko ; Boyle, Richard ; Theisel, Holger ; Nefian, Ara ; Meenakshisundaram, Gopi ; Malzbender, Tom ; Parvin, Bahram ; Pascucci, Valerio ; Molineros, Jose</contributor><creatorcontrib>Gee, Andrew P. ; Mayol-Cuevas, Walterio ; Zara, Jiri ; Remagnino, Paolo ; Bebis, George ; Koracin, Darko ; Boyle, Richard ; Theisel, Holger ; Nefian, Ara ; Meenakshisundaram, Gopi ; Malzbender, Tom ; Parvin, Bahram ; Pascucci, Valerio ; Molineros, Jose</creatorcontrib><description>Existing monocular vision-based SLAM systems favour interest point features as landmarks, but these are easily occluded and can only be reliably matched over a narrow range of viewpoints. Line segments offer an interesting alternative, as line matching is more stable with respect to viewpoint changes and lines are robust to partial occlusion. In this paper we present a model-based SLAM system that uses 3D line segments as landmarks. Unscented Kalman filters are used to initialise new line segments and generate a 3D wireframe model of the scene that can be tracked with a robust model-based tracking algorithm. Uncertainties in the camera position are fed into the initialisation of new model edges. Results show the system operating in real-time with resilience to partial occlusion. The maps of line segments generated during the SLAM process are physically meaningful and their structure is measured against the true 3D structure of the scene.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540486267</identifier><identifier>ISBN: 9783540486268</identifier><identifier>ISBN: 3540486287</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540486275</identifier><identifier>EISBN: 9783540486275</identifier><identifier>DOI: 10.1007/11919629_37</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Edge Feature ; Exact sciences and technology ; Line Segment ; Model Edge ; Partial Occlusion ; Pattern recognition. Digital image processing. Computational geometry ; Unscented Kalman Filter</subject><ispartof>Advances in Visual Computing, 2006, p.354-363</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11919629_37$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11919629_37$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,793,4050,4051,25140,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20046609$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Zara, Jiri</contributor><contributor>Remagnino, Paolo</contributor><contributor>Bebis, George</contributor><contributor>Koracin, Darko</contributor><contributor>Boyle, Richard</contributor><contributor>Theisel, Holger</contributor><contributor>Nefian, Ara</contributor><contributor>Meenakshisundaram, Gopi</contributor><contributor>Malzbender, Tom</contributor><contributor>Parvin, Bahram</contributor><contributor>Pascucci, Valerio</contributor><contributor>Molineros, Jose</contributor><creatorcontrib>Gee, Andrew P.</creatorcontrib><creatorcontrib>Mayol-Cuevas, Walterio</creatorcontrib><title>Real-Time Model-Based SLAM Using Line Segments</title><title>Advances in Visual Computing</title><description>Existing monocular vision-based SLAM systems favour interest point features as landmarks, but these are easily occluded and can only be reliably matched over a narrow range of viewpoints. Line segments offer an interesting alternative, as line matching is more stable with respect to viewpoint changes and lines are robust to partial occlusion. In this paper we present a model-based SLAM system that uses 3D line segments as landmarks. Unscented Kalman filters are used to initialise new line segments and generate a 3D wireframe model of the scene that can be tracked with a robust model-based tracking algorithm. Uncertainties in the camera position are fed into the initialisation of new model edges. Results show the system operating in real-time with resilience to partial occlusion. The maps of line segments generated during the SLAM process are physically meaningful and their structure is measured against the true 3D structure of the scene.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Edge Feature</subject><subject>Exact sciences and technology</subject><subject>Line Segment</subject><subject>Model Edge</subject><subject>Partial Occlusion</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Unscented Kalman Filter</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540486267</isbn><isbn>9783540486268</isbn><isbn>3540486287</isbn><isbn>3540486275</isbn><isbn>9783540486275</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtPwzAQhM1LopSe-AO5cODgsutnfCwVLykVEm3PlhPbUSBNo7gX_j1BRYK9zI6-0Uo7hNwgzBFA3yMaNIoZy_UJueJSgMgV0_KUTFAhUs6FOfsDSp-TCXBg1GjBL8kspQ8YRxiUEiZk_h5cSzfNLmSrvQ8tfXAp-GxdLFbZNjVdnRVNF7J1qHehO6RrchFdm8LsV6dk-_S4Wb7Q4u35dbkoaM_QHKj30XCRe1cK78y4VgwhdzmgR6mYqLjWCphSUpVRSRPd6CoZqpwrE_PIp-T2eLd3qXJtHFxXNcn2Q7Nzw5dl4wNKgRlzd8dcGlFXh8GW-_1nsgj2py37ry3-DcVqU-I</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Gee, Andrew P.</creator><creator>Mayol-Cuevas, Walterio</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Real-Time Model-Based SLAM Using Line Segments</title><author>Gee, Andrew P. ; Mayol-Cuevas, Walterio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-ddf9348dab4da9934c2108a801d15624c3776026656bf659fa602c5ec8369f8f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Edge Feature</topic><topic>Exact sciences and technology</topic><topic>Line Segment</topic><topic>Model Edge</topic><topic>Partial Occlusion</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Unscented Kalman Filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gee, Andrew P.</creatorcontrib><creatorcontrib>Mayol-Cuevas, Walterio</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gee, Andrew P.</au><au>Mayol-Cuevas, Walterio</au><au>Zara, Jiri</au><au>Remagnino, Paolo</au><au>Bebis, George</au><au>Koracin, Darko</au><au>Boyle, Richard</au><au>Theisel, Holger</au><au>Nefian, Ara</au><au>Meenakshisundaram, Gopi</au><au>Malzbender, Tom</au><au>Parvin, Bahram</au><au>Pascucci, Valerio</au><au>Molineros, Jose</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real-Time Model-Based SLAM Using Line Segments</atitle><btitle>Advances in Visual Computing</btitle><date>2006</date><risdate>2006</risdate><spage>354</spage><epage>363</epage><pages>354-363</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540486267</isbn><isbn>9783540486268</isbn><isbn>3540486287</isbn><eisbn>3540486275</eisbn><eisbn>9783540486275</eisbn><abstract>Existing monocular vision-based SLAM systems favour interest point features as landmarks, but these are easily occluded and can only be reliably matched over a narrow range of viewpoints. Line segments offer an interesting alternative, as line matching is more stable with respect to viewpoint changes and lines are robust to partial occlusion. In this paper we present a model-based SLAM system that uses 3D line segments as landmarks. Unscented Kalman filters are used to initialise new line segments and generate a 3D wireframe model of the scene that can be tracked with a robust model-based tracking algorithm. Uncertainties in the camera position are fed into the initialisation of new model edges. Results show the system operating in real-time with resilience to partial occlusion. The maps of line segments generated during the SLAM process are physically meaningful and their structure is measured against the true 3D structure of the scene.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11919629_37</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Visual Computing, 2006, p.354-363
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11919629_37
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Edge Feature
Exact sciences and technology
Line Segment
Model Edge
Partial Occlusion
Pattern recognition. Digital image processing. Computational geometry
Unscented Kalman Filter
title Real-Time Model-Based SLAM Using Line Segments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real-Time%20Model-Based%20SLAM%20Using%20Line%20Segments&rft.btitle=Advances%20in%20Visual%20Computing&rft.au=Gee,%20Andrew%20P.&rft.date=2006&rft.spage=354&rft.epage=363&rft.pages=354-363&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540486267&rft.isbn_list=9783540486268&rft.isbn_list=3540486287&rft_id=info:doi/10.1007/11919629_37&rft_dat=%3Cpascalfrancis_sprin%3E20046609%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540486275&rft.eisbn_list=9783540486275&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true