CPU-GPU Multithreaded Programming Model: Application to the Path Tracing with Next Event Estimation Algorithm

Today’s hardware includes powerful devices such as graphics process units (GPU) that are not always used to their maximum capacities. Our main goal is to take advantage of these unused resources. To achieve this, we abstract GPUs as SIMD streaming coprocessors and use them within the framework of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cassagnabère, Christophe, Rousselle, François, Renaud, Christophe
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue
container_start_page 265
container_title
container_volume 4292
creator Cassagnabère, Christophe
Rousselle, François
Renaud, Christophe
description Today’s hardware includes powerful devices such as graphics process units (GPU) that are not always used to their maximum capacities. Our main goal is to take advantage of these unused resources. To achieve this, we abstract GPUs as SIMD streaming coprocessors and use them within the framework of a multithreaded parallel model. Thus we aim to use all the computing power of a modern PC for speeding up a global illumination simulation software. The global illumination of a virtual scene can be estimated with stochastic methods such as Path Tracing. These methods however remain costly in terms of rendering time, because of the high sampling required to produce good quality frames. The most part of the rendering time is spent performing intersections tests between rays and triangles. We propose to speed up the rendering of a frame, by using all the available CPUs and GPUs. Our work is based on the ray engine developed by Carr et al. for ray tracing, and is mapped to our parallel programming model.
doi_str_mv 10.1007/11919629_28
format Book Chapter
fullrecord <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_springer_books_10_1007_11919629_28</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03505362v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h253t-eb5eaf1b20aaec531f604c76e87f80690b7ffe0771634f9a7778a07151da150f3</originalsourceid><addsrcrecordid>eNpNUUtPwzAMDi-JMTjxB3LhwKFgN03ScpsmXtKAHbZz5HXJWuhjSsOAf0-nIcAHW_L3kOWPsXOEKwTQ14gZZirOTJzusRMhE0hSFWu5zwaoECMhkuzgD1D6kA1AQBxlOhHH7KzrXqGvJEMpYcDq8XQe3U_n_Om9CmUovKWlXfKpb1ee6rpsVvypXdrqho_W66rMKZRtw0PLQ2H5lELBZ57yLe2jV_Nn-xn47cY2fe9CWe_oo2rV-h6uT9mRo6qzZz9zyOZ3t7PxQzR5uX8cjyZREUsRIruQlhwuYiCyuRToFCS5VjbVLgWVwUI7Z0FrVCJxGWmtUwKNEpeEEpwYssudb0GVWfv-Dv9lWirNw2hitjsQEqRQ8QZ77sWOu6Yup8p5avKy-1XF_a-UAvjz7HqoWVlvFm371hkEsw3G_AtGfAN9b3no</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>CPU-GPU Multithreaded Programming Model: Application to the Path Tracing with Next Event Estimation Algorithm</title><source>Springer Books</source><creator>Cassagnabère, Christophe ; Rousselle, François ; Renaud, Christophe</creator><contributor>Zara, Jiri ; Remagnino, Paolo ; Bebis, George ; Koracin, Darko ; Boyle, Richard ; Theisel, Holger ; Nefian, Ara ; Meenakshisundaram, Gopi ; Malzbender, Tom ; Parvin, Bahram ; Pascucci, Valerio ; Molineros, Jose</contributor><creatorcontrib>Cassagnabère, Christophe ; Rousselle, François ; Renaud, Christophe ; Zara, Jiri ; Remagnino, Paolo ; Bebis, George ; Koracin, Darko ; Boyle, Richard ; Theisel, Holger ; Nefian, Ara ; Meenakshisundaram, Gopi ; Malzbender, Tom ; Parvin, Bahram ; Pascucci, Valerio ; Molineros, Jose</creatorcontrib><description>Today’s hardware includes powerful devices such as graphics process units (GPU) that are not always used to their maximum capacities. Our main goal is to take advantage of these unused resources. To achieve this, we abstract GPUs as SIMD streaming coprocessors and use them within the framework of a multithreaded parallel model. Thus we aim to use all the computing power of a modern PC for speeding up a global illumination simulation software. The global illumination of a virtual scene can be estimated with stochastic methods such as Path Tracing. These methods however remain costly in terms of rendering time, because of the high sampling required to produce good quality frames. The most part of the rendering time is spent performing intersections tests between rays and triangles. We propose to speed up the rendering of a frame, by using all the available CPUs and GPUs. Our work is based on the ray engine developed by Carr et al. for ray tracing, and is mapped to our parallel programming model.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540486267</identifier><identifier>ISBN: 9783540486268</identifier><identifier>ISBN: 3540486287</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540486275</identifier><identifier>EISBN: 9783540486275</identifier><identifier>DOI: 10.1007/11919629_28</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial Intelligence ; Computer Science ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Computer Vision and Pattern Recognition ; Exact sciences and technology ; Global Illumination ; Graphic Hardware ; Graphic Process Unit ; Graphics ; Intersection Test ; Main Thread ; Pattern recognition. Digital image processing. Computational geometry ; Software</subject><ispartof>Advances in Visual Computing, 2006, Vol.4292, p.265-275</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8350-8824 ; 0000-0002-8786-7138</orcidid><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11919629_28$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11919629_28$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,793,885,4050,4051,25140,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20046600$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03505362$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Zara, Jiri</contributor><contributor>Remagnino, Paolo</contributor><contributor>Bebis, George</contributor><contributor>Koracin, Darko</contributor><contributor>Boyle, Richard</contributor><contributor>Theisel, Holger</contributor><contributor>Nefian, Ara</contributor><contributor>Meenakshisundaram, Gopi</contributor><contributor>Malzbender, Tom</contributor><contributor>Parvin, Bahram</contributor><contributor>Pascucci, Valerio</contributor><contributor>Molineros, Jose</contributor><creatorcontrib>Cassagnabère, Christophe</creatorcontrib><creatorcontrib>Rousselle, François</creatorcontrib><creatorcontrib>Renaud, Christophe</creatorcontrib><title>CPU-GPU Multithreaded Programming Model: Application to the Path Tracing with Next Event Estimation Algorithm</title><title>Advances in Visual Computing</title><description>Today’s hardware includes powerful devices such as graphics process units (GPU) that are not always used to their maximum capacities. Our main goal is to take advantage of these unused resources. To achieve this, we abstract GPUs as SIMD streaming coprocessors and use them within the framework of a multithreaded parallel model. Thus we aim to use all the computing power of a modern PC for speeding up a global illumination simulation software. The global illumination of a virtual scene can be estimated with stochastic methods such as Path Tracing. These methods however remain costly in terms of rendering time, because of the high sampling required to produce good quality frames. The most part of the rendering time is spent performing intersections tests between rays and triangles. We propose to speed up the rendering of a frame, by using all the available CPUs and GPUs. Our work is based on the ray engine developed by Carr et al. for ray tracing, and is mapped to our parallel programming model.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Exact sciences and technology</subject><subject>Global Illumination</subject><subject>Graphic Hardware</subject><subject>Graphic Process Unit</subject><subject>Graphics</subject><subject>Intersection Test</subject><subject>Main Thread</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540486267</isbn><isbn>9783540486268</isbn><isbn>3540486287</isbn><isbn>3540486275</isbn><isbn>9783540486275</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNUUtPwzAMDi-JMTjxB3LhwKFgN03ScpsmXtKAHbZz5HXJWuhjSsOAf0-nIcAHW_L3kOWPsXOEKwTQ14gZZirOTJzusRMhE0hSFWu5zwaoECMhkuzgD1D6kA1AQBxlOhHH7KzrXqGvJEMpYcDq8XQe3U_n_Om9CmUovKWlXfKpb1ee6rpsVvypXdrqho_W66rMKZRtw0PLQ2H5lELBZ57yLe2jV_Nn-xn47cY2fe9CWe_oo2rV-h6uT9mRo6qzZz9zyOZ3t7PxQzR5uX8cjyZREUsRIruQlhwuYiCyuRToFCS5VjbVLgWVwUI7Z0FrVCJxGWmtUwKNEpeEEpwYssudb0GVWfv-Dv9lWirNw2hitjsQEqRQ8QZ77sWOu6Yup8p5avKy-1XF_a-UAvjz7HqoWVlvFm371hkEsw3G_AtGfAN9b3no</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Cassagnabère, Christophe</creator><creator>Rousselle, François</creator><creator>Renaud, Christophe</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8350-8824</orcidid><orcidid>https://orcid.org/0000-0002-8786-7138</orcidid></search><sort><creationdate>2006</creationdate><title>CPU-GPU Multithreaded Programming Model: Application to the Path Tracing with Next Event Estimation Algorithm</title><author>Cassagnabère, Christophe ; Rousselle, François ; Renaud, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h253t-eb5eaf1b20aaec531f604c76e87f80690b7ffe0771634f9a7778a07151da150f3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Exact sciences and technology</topic><topic>Global Illumination</topic><topic>Graphic Hardware</topic><topic>Graphic Process Unit</topic><topic>Graphics</topic><topic>Intersection Test</topic><topic>Main Thread</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassagnabère, Christophe</creatorcontrib><creatorcontrib>Rousselle, François</creatorcontrib><creatorcontrib>Renaud, Christophe</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassagnabère, Christophe</au><au>Rousselle, François</au><au>Renaud, Christophe</au><au>Zara, Jiri</au><au>Remagnino, Paolo</au><au>Bebis, George</au><au>Koracin, Darko</au><au>Boyle, Richard</au><au>Theisel, Holger</au><au>Nefian, Ara</au><au>Meenakshisundaram, Gopi</au><au>Malzbender, Tom</au><au>Parvin, Bahram</au><au>Pascucci, Valerio</au><au>Molineros, Jose</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>CPU-GPU Multithreaded Programming Model: Application to the Path Tracing with Next Event Estimation Algorithm</atitle><btitle>Advances in Visual Computing</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><volume>4292</volume><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540486267</isbn><isbn>9783540486268</isbn><isbn>3540486287</isbn><eisbn>3540486275</eisbn><eisbn>9783540486275</eisbn><abstract>Today’s hardware includes powerful devices such as graphics process units (GPU) that are not always used to their maximum capacities. Our main goal is to take advantage of these unused resources. To achieve this, we abstract GPUs as SIMD streaming coprocessors and use them within the framework of a multithreaded parallel model. Thus we aim to use all the computing power of a modern PC for speeding up a global illumination simulation software. The global illumination of a virtual scene can be estimated with stochastic methods such as Path Tracing. These methods however remain costly in terms of rendering time, because of the high sampling required to produce good quality frames. The most part of the rendering time is spent performing intersections tests between rays and triangles. We propose to speed up the rendering of a frame, by using all the available CPUs and GPUs. Our work is based on the ray engine developed by Carr et al. for ray tracing, and is mapped to our parallel programming model.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11919629_28</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8350-8824</orcidid><orcidid>https://orcid.org/0000-0002-8786-7138</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Visual Computing, 2006, Vol.4292, p.265-275
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11919629_28
source Springer Books
subjects Applied sciences
Artificial Intelligence
Computer Science
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Computer Vision and Pattern Recognition
Exact sciences and technology
Global Illumination
Graphic Hardware
Graphic Process Unit
Graphics
Intersection Test
Main Thread
Pattern recognition. Digital image processing. Computational geometry
Software
title CPU-GPU Multithreaded Programming Model: Application to the Path Tracing with Next Event Estimation Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=CPU-GPU%20Multithreaded%20Programming%20Model:%20Application%20to%20the%20Path%20Tracing%20with%20Next%20Event%20Estimation%20Algorithm&rft.btitle=Advances%20in%20Visual%20Computing&rft.au=Cassagnab%C3%A8re,%20Christophe&rft.date=2006&rft.volume=4292&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540486267&rft.isbn_list=9783540486268&rft.isbn_list=3540486287&rft_id=info:doi/10.1007/11919629_28&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_03505362v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540486275&rft.eisbn_list=9783540486275&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true