Contextual Ontological Concepts Extraction

Ontologies provide a common layer which plays a major role in supporting information exchange and sharing. In this paper, we focus on the ontological concept extraction process from HTML documents. We propose an unsupervised hierarchical clustering algorithm namely “Contextual Ontological Concept Ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karoui, Lobna, Bennacer, Nacéra, Aufaure, Marie-Aude
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue
container_start_page 306
container_title
container_volume
creator Karoui, Lobna
Bennacer, Nacéra
Aufaure, Marie-Aude
description Ontologies provide a common layer which plays a major role in supporting information exchange and sharing. In this paper, we focus on the ontological concept extraction process from HTML documents. We propose an unsupervised hierarchical clustering algorithm namely “Contextual Ontological Concept Extraction” (COCE) which is an incremental use of a partitioning algorithm and is guided by a structural context. This context exploits the html structure and the location of words to select the semantically closer cooccurrents for each word and to improve the words weighting. Guided by this context definition, we perform an incremental clustering that refines the words’ context of each cluster to obtain semantic extracted concepts. The COCE algorithm offers the choice between either an automatic execution or an interactive one. We experiment the COCE algorithm on French documents related to the tourism. Our results show how the execution of our context-based algorithm improves the relevance of the clusters’ conceptual quality.
doi_str_mv 10.1007/11893318_32
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11893318_32</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11893318_32</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-5ba1c55e7f98bc58065e74d6e60f6254457c55db5204636c413c6c1b2996f99a3</originalsourceid><addsrcrecordid>eNpNUEtLw0AY_HyBsebkH-hVIbrffvs8SqgPKPSi55BsNyUasiW7Qn--K1ZwLjPMwDAMwA2ye2RMPyAaS4SmIX4CpdWGpGBCCUvmFApUiBWRsGdw9RcgnUPBiPHKakGXUMb4wTIINSdVwF0dpuQP6asdl5sphTHsBpd1tp3fp7hcHdLcujSE6Rou-naMvjzyAt6fVm_1S7XePL_Wj-sq5nWpkl2LTkqve2s6Jw1TWYut8or1ikshpM7xtpM8DyTlBJJTDjtureqtbWkBt7-9cT8P087PTRfCZ2yQNT8nNP9OoG8ORkgg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Contextual Ontological Concepts Extraction</title><source>Springer Books</source><creator>Karoui, Lobna ; Bennacer, Nacéra ; Aufaure, Marie-Aude</creator><contributor>Lavrač, Nada ; Todorovski, Ljupčo ; Jantke, Klaus P.</contributor><creatorcontrib>Karoui, Lobna ; Bennacer, Nacéra ; Aufaure, Marie-Aude ; Lavrač, Nada ; Todorovski, Ljupčo ; Jantke, Klaus P.</creatorcontrib><description>Ontologies provide a common layer which plays a major role in supporting information exchange and sharing. In this paper, we focus on the ontological concept extraction process from HTML documents. We propose an unsupervised hierarchical clustering algorithm namely “Contextual Ontological Concept Extraction” (COCE) which is an incremental use of a partitioning algorithm and is guided by a structural context. This context exploits the html structure and the location of words to select the semantically closer cooccurrents for each word and to improve the words weighting. Guided by this context definition, we perform an incremental clustering that refines the words’ context of each cluster to obtain semantic extracted concepts. The COCE algorithm offers the choice between either an automatic execution or an interactive one. We experiment the COCE algorithm on French documents related to the tourism. Our results show how the execution of our context-based algorithm improves the relevance of the clusters’ conceptual quality.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540464913</identifier><identifier>ISBN: 9783540464914</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540464938</identifier><identifier>EISBN: 354046493X</identifier><identifier>DOI: 10.1007/11893318_32</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Discovery Science, 2006, p.306-310</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11893318_32$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11893318_32$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Lavrač, Nada</contributor><contributor>Todorovski, Ljupčo</contributor><contributor>Jantke, Klaus P.</contributor><creatorcontrib>Karoui, Lobna</creatorcontrib><creatorcontrib>Bennacer, Nacéra</creatorcontrib><creatorcontrib>Aufaure, Marie-Aude</creatorcontrib><title>Contextual Ontological Concepts Extraction</title><title>Discovery Science</title><description>Ontologies provide a common layer which plays a major role in supporting information exchange and sharing. In this paper, we focus on the ontological concept extraction process from HTML documents. We propose an unsupervised hierarchical clustering algorithm namely “Contextual Ontological Concept Extraction” (COCE) which is an incremental use of a partitioning algorithm and is guided by a structural context. This context exploits the html structure and the location of words to select the semantically closer cooccurrents for each word and to improve the words weighting. Guided by this context definition, we perform an incremental clustering that refines the words’ context of each cluster to obtain semantic extracted concepts. The COCE algorithm offers the choice between either an automatic execution or an interactive one. We experiment the COCE algorithm on French documents related to the tourism. Our results show how the execution of our context-based algorithm improves the relevance of the clusters’ conceptual quality.</description><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540464913</isbn><isbn>9783540464914</isbn><isbn>9783540464938</isbn><isbn>354046493X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNUEtLw0AY_HyBsebkH-hVIbrffvs8SqgPKPSi55BsNyUasiW7Qn--K1ZwLjPMwDAMwA2ye2RMPyAaS4SmIX4CpdWGpGBCCUvmFApUiBWRsGdw9RcgnUPBiPHKakGXUMb4wTIINSdVwF0dpuQP6asdl5sphTHsBpd1tp3fp7hcHdLcujSE6Rou-naMvjzyAt6fVm_1S7XePL_Wj-sq5nWpkl2LTkqve2s6Jw1TWYut8or1ikshpM7xtpM8DyTlBJJTDjtureqtbWkBt7-9cT8P087PTRfCZ2yQNT8nNP9OoG8ORkgg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Karoui, Lobna</creator><creator>Bennacer, Nacéra</creator><creator>Aufaure, Marie-Aude</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>Contextual Ontological Concepts Extraction</title><author>Karoui, Lobna ; Bennacer, Nacéra ; Aufaure, Marie-Aude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-5ba1c55e7f98bc58065e74d6e60f6254457c55db5204636c413c6c1b2996f99a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karoui, Lobna</creatorcontrib><creatorcontrib>Bennacer, Nacéra</creatorcontrib><creatorcontrib>Aufaure, Marie-Aude</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karoui, Lobna</au><au>Bennacer, Nacéra</au><au>Aufaure, Marie-Aude</au><au>Lavrač, Nada</au><au>Todorovski, Ljupčo</au><au>Jantke, Klaus P.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Contextual Ontological Concepts Extraction</atitle><btitle>Discovery Science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>306</spage><epage>310</epage><pages>306-310</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540464913</isbn><isbn>9783540464914</isbn><eisbn>9783540464938</eisbn><eisbn>354046493X</eisbn><abstract>Ontologies provide a common layer which plays a major role in supporting information exchange and sharing. In this paper, we focus on the ontological concept extraction process from HTML documents. We propose an unsupervised hierarchical clustering algorithm namely “Contextual Ontological Concept Extraction” (COCE) which is an incremental use of a partitioning algorithm and is guided by a structural context. This context exploits the html structure and the location of words to select the semantically closer cooccurrents for each word and to improve the words weighting. Guided by this context definition, we perform an incremental clustering that refines the words’ context of each cluster to obtain semantic extracted concepts. The COCE algorithm offers the choice between either an automatic execution or an interactive one. We experiment the COCE algorithm on French documents related to the tourism. Our results show how the execution of our context-based algorithm improves the relevance of the clusters’ conceptual quality.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11893318_32</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Discovery Science, 2006, p.306-310
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11893318_32
source Springer Books
title Contextual Ontological Concepts Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Contextual%20Ontological%20Concepts%20Extraction&rft.btitle=Discovery%20Science&rft.au=Karoui,%20Lobna&rft.date=2006&rft.spage=306&rft.epage=310&rft.pages=306-310&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540464913&rft.isbn_list=9783540464914&rft_id=info:doi/10.1007/11893318_32&rft_dat=%3Cspringer%3Espringer_books_10_1007_11893318_32%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540464938&rft.eisbn_list=354046493X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true