An Integrated Algorithm for MRI Brain Images Segmentation

This paper presents an integrated algorithm for MRI (Magnetic Resonance Imaging) brain tissues segmentation. The method is composed of four stages. Noise in the MRI images is first reduced by a versatile wavelet-based filter. Then, the watershed algorithm is applied to brain tissues as an initial se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lu, Yinghua, Wang, Jianzhong, Kong, Jun, Zhang, Baoxue, Zhang, Jingdan
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue
container_start_page 132
container_title
container_volume
creator Lu, Yinghua
Wang, Jianzhong
Kong, Jun
Zhang, Baoxue
Zhang, Jingdan
description This paper presents an integrated algorithm for MRI (Magnetic Resonance Imaging) brain tissues segmentation. The method is composed of four stages. Noise in the MRI images is first reduced by a versatile wavelet-based filter. Then, the watershed algorithm is applied to brain tissues as an initial segmenting method. Because the result of classical watershed algorithm on grey-scale textured images such as tissue images is over-segmentation. The third stage is a merging process for the over-segmentation regions using fuzzy clustering algorithm (Fuzzy C-Means). But there are still some regions which are not divided completely due to the low contrast in them, particularly in the transitional regions of gray matter and white matter, or cerebrospinal fluid and gray matter. We exploited a method base on Minimum Covariance Determinant (MCD) estimator to detect the regions needed segmentation again, and then partition them by a supervised k-Nearest Neighbor (kNN) classifier. This integrated approach yields a robust and precise segmentation. The efficacy of the proposed algorithm is validated using extensive experiments.
doi_str_mv 10.1007/11889762_12
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11889762_12</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11889762_12</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-a338112d2b41c5be6ed722819889388a94c404ee5e983b9b4d7e9d318488df843</originalsourceid><addsrcrecordid>eNpNUE1PhDAUrF-JuO7JP9CrB7Svr9D2iJtVSdaY-HEmhT4QXcCU_v-I0UTnMoeZTGaGsQsQVyCEvgYwxupcViAP2BlmSqhcZsYesgRygBRR2aM_QYtjlggUMrVa4Slbz_O7WICQW5klzBYjL8dIXXCRPC_23RT6-Dbwdgr84ankN8H1i2VwHc38mbqBxuhiP43n7KR1-5nWv7xir7fbl819unu8KzfFLm0kQkwdogGQXtYKmqymnLyW0oBdZqAxzqpmaUqUkTVY21p5TdYjGGWMb43CFbv8yZ0_Qz92FKp6mj7mCkT1fUj17xD8ApbtS78</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>An Integrated Algorithm for MRI Brain Images Segmentation</title><source>Springer Books</source><creator>Lu, Yinghua ; Wang, Jianzhong ; Kong, Jun ; Zhang, Baoxue ; Zhang, Jingdan</creator><contributor>Beichel, Reinhard R. ; Sonka, Milan</contributor><creatorcontrib>Lu, Yinghua ; Wang, Jianzhong ; Kong, Jun ; Zhang, Baoxue ; Zhang, Jingdan ; Beichel, Reinhard R. ; Sonka, Milan</creatorcontrib><description>This paper presents an integrated algorithm for MRI (Magnetic Resonance Imaging) brain tissues segmentation. The method is composed of four stages. Noise in the MRI images is first reduced by a versatile wavelet-based filter. Then, the watershed algorithm is applied to brain tissues as an initial segmenting method. Because the result of classical watershed algorithm on grey-scale textured images such as tissue images is over-segmentation. The third stage is a merging process for the over-segmentation regions using fuzzy clustering algorithm (Fuzzy C-Means). But there are still some regions which are not divided completely due to the low contrast in them, particularly in the transitional regions of gray matter and white matter, or cerebrospinal fluid and gray matter. We exploited a method base on Minimum Covariance Determinant (MCD) estimator to detect the regions needed segmentation again, and then partition them by a supervised k-Nearest Neighbor (kNN) classifier. This integrated approach yields a robust and precise segmentation. The efficacy of the proposed algorithm is validated using extensive experiments.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540462570</identifier><identifier>ISBN: 9783540462576</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540462589</identifier><identifier>EISBN: 9783540462583</identifier><identifier>DOI: 10.1007/11889762_12</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Fuzzy Cluster Algorithm ; Gray Matter ; Integrate Algorithm ; Transitional Region ; Watershed Algorithm</subject><ispartof>Computer Vision Approaches to Medical Image Analysis, 2006, p.132-142</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-a338112d2b41c5be6ed722819889388a94c404ee5e983b9b4d7e9d318488df843</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11889762_12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11889762_12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Beichel, Reinhard R.</contributor><contributor>Sonka, Milan</contributor><creatorcontrib>Lu, Yinghua</creatorcontrib><creatorcontrib>Wang, Jianzhong</creatorcontrib><creatorcontrib>Kong, Jun</creatorcontrib><creatorcontrib>Zhang, Baoxue</creatorcontrib><creatorcontrib>Zhang, Jingdan</creatorcontrib><title>An Integrated Algorithm for MRI Brain Images Segmentation</title><title>Computer Vision Approaches to Medical Image Analysis</title><description>This paper presents an integrated algorithm for MRI (Magnetic Resonance Imaging) brain tissues segmentation. The method is composed of four stages. Noise in the MRI images is first reduced by a versatile wavelet-based filter. Then, the watershed algorithm is applied to brain tissues as an initial segmenting method. Because the result of classical watershed algorithm on grey-scale textured images such as tissue images is over-segmentation. The third stage is a merging process for the over-segmentation regions using fuzzy clustering algorithm (Fuzzy C-Means). But there are still some regions which are not divided completely due to the low contrast in them, particularly in the transitional regions of gray matter and white matter, or cerebrospinal fluid and gray matter. We exploited a method base on Minimum Covariance Determinant (MCD) estimator to detect the regions needed segmentation again, and then partition them by a supervised k-Nearest Neighbor (kNN) classifier. This integrated approach yields a robust and precise segmentation. The efficacy of the proposed algorithm is validated using extensive experiments.</description><subject>Fuzzy Cluster Algorithm</subject><subject>Gray Matter</subject><subject>Integrate Algorithm</subject><subject>Transitional Region</subject><subject>Watershed Algorithm</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540462570</isbn><isbn>9783540462576</isbn><isbn>3540462589</isbn><isbn>9783540462583</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNUE1PhDAUrF-JuO7JP9CrB7Svr9D2iJtVSdaY-HEmhT4QXcCU_v-I0UTnMoeZTGaGsQsQVyCEvgYwxupcViAP2BlmSqhcZsYesgRygBRR2aM_QYtjlggUMrVa4Slbz_O7WICQW5klzBYjL8dIXXCRPC_23RT6-Dbwdgr84ankN8H1i2VwHc38mbqBxuhiP43n7KR1-5nWv7xir7fbl819unu8KzfFLm0kQkwdogGQXtYKmqymnLyW0oBdZqAxzqpmaUqUkTVY21p5TdYjGGWMb43CFbv8yZ0_Qz92FKp6mj7mCkT1fUj17xD8ApbtS78</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Lu, Yinghua</creator><creator>Wang, Jianzhong</creator><creator>Kong, Jun</creator><creator>Zhang, Baoxue</creator><creator>Zhang, Jingdan</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>An Integrated Algorithm for MRI Brain Images Segmentation</title><author>Lu, Yinghua ; Wang, Jianzhong ; Kong, Jun ; Zhang, Baoxue ; Zhang, Jingdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-a338112d2b41c5be6ed722819889388a94c404ee5e983b9b4d7e9d318488df843</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Fuzzy Cluster Algorithm</topic><topic>Gray Matter</topic><topic>Integrate Algorithm</topic><topic>Transitional Region</topic><topic>Watershed Algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yinghua</creatorcontrib><creatorcontrib>Wang, Jianzhong</creatorcontrib><creatorcontrib>Kong, Jun</creatorcontrib><creatorcontrib>Zhang, Baoxue</creatorcontrib><creatorcontrib>Zhang, Jingdan</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yinghua</au><au>Wang, Jianzhong</au><au>Kong, Jun</au><au>Zhang, Baoxue</au><au>Zhang, Jingdan</au><au>Beichel, Reinhard R.</au><au>Sonka, Milan</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>An Integrated Algorithm for MRI Brain Images Segmentation</atitle><btitle>Computer Vision Approaches to Medical Image Analysis</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>132</spage><epage>142</epage><pages>132-142</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540462570</isbn><isbn>9783540462576</isbn><eisbn>3540462589</eisbn><eisbn>9783540462583</eisbn><abstract>This paper presents an integrated algorithm for MRI (Magnetic Resonance Imaging) brain tissues segmentation. The method is composed of four stages. Noise in the MRI images is first reduced by a versatile wavelet-based filter. Then, the watershed algorithm is applied to brain tissues as an initial segmenting method. Because the result of classical watershed algorithm on grey-scale textured images such as tissue images is over-segmentation. The third stage is a merging process for the over-segmentation regions using fuzzy clustering algorithm (Fuzzy C-Means). But there are still some regions which are not divided completely due to the low contrast in them, particularly in the transitional regions of gray matter and white matter, or cerebrospinal fluid and gray matter. We exploited a method base on Minimum Covariance Determinant (MCD) estimator to detect the regions needed segmentation again, and then partition them by a supervised k-Nearest Neighbor (kNN) classifier. This integrated approach yields a robust and precise segmentation. The efficacy of the proposed algorithm is validated using extensive experiments.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11889762_12</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Vision Approaches to Medical Image Analysis, 2006, p.132-142
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11889762_12
source Springer Books
subjects Fuzzy Cluster Algorithm
Gray Matter
Integrate Algorithm
Transitional Region
Watershed Algorithm
title An Integrated Algorithm for MRI Brain Images Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=An%20Integrated%20Algorithm%20for%20MRI%20Brain%20Images%20Segmentation&rft.btitle=Computer%20Vision%20Approaches%20to%20Medical%20Image%20Analysis&rft.au=Lu,%20Yinghua&rft.date=2006&rft.spage=132&rft.epage=142&rft.pages=132-142&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540462570&rft.isbn_list=9783540462576&rft_id=info:doi/10.1007/11889762_12&rft_dat=%3Cspringer%3Espringer_books_10_1007_11889762_12%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540462589&rft.eisbn_list=9783540462583&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true