A Method for Registering Diffusion Weighted Magnetic Resonance Images

Diffusion weighted magnetic resonance (DWMR or DW) imaging is a fast evolving technique to investigate the connectivity of brain white matter by measuring the self-diffusion of the water molecules in the tissue. Registration is a key step in group analysis of the DW images that may lead to understan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tao, Xiaodong, Miller, James V.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue Pt 2
container_start_page 594
container_title
container_volume 9
creator Tao, Xiaodong
Miller, James V.
description Diffusion weighted magnetic resonance (DWMR or DW) imaging is a fast evolving technique to investigate the connectivity of brain white matter by measuring the self-diffusion of the water molecules in the tissue. Registration is a key step in group analysis of the DW images that may lead to understanding of functional and structural variability of the normal brain, understanding disease process, and improving neurosurgical planning. In this paper, we present a new method for registering DW images. The method works directly on the diffusion weighted images without using tensor reconstruction, fiber tracking, and fiber clustering. Therefore, the performance of the method does not rely on the accuracy and robustness of these steps. Moreover, since all the information in the original diffusion weighted images is used for registration, the results of the method is robust to imaging noise. We demonstrate the method on intra-subject registration with an affine transform using DW images acquired on the same scanner with the same imaging protocol. Extension to deformable registration for images acquired on different scanners and/or with different imaging protocols is also discussed.
doi_str_mv 10.1007/11866763_73
format Book Chapter
fullrecord <record><control><sourceid>pubmed_sprin</sourceid><recordid>TN_cdi_springer_books_10_1007_11866763_73</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17354821</sourcerecordid><originalsourceid>FETCH-LOGICAL-p319t-e21ec3a082b8c8b6615df2e0981cc86b4aa6700ce9ae09d12feacec3686b58493</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1LNJSeuCNfOQS8ceLHsSoFKrVCQiC4RY6zSQ00ieL0wL_HVUGwl5F2vl1phpALYNfAmLwBUEJIwXPJD8gZz1KWpjJR6pBEIABizlN99GfIt2MSMc6SWMuUj8jE-3cWJlNaaXFKRiADqhKIyHxKVzis25JWbU-fsHZ-wN41Nb11VbX1rm3oK7p6PWBJV6ZucHA2cL5tTGORLjamRn9OTirz6XHyo2Pycjd_nj3Ey8f7xWy6jDsOeogxAbTcMJUUyqpCCMjKKkGmFVirRJEaIyRjFrUJyxKSCo0NFyJ4mUo1H5PL_d9uW2ywzLvebUz_lf_mCcDVHvDdLgT2edG2Hz4Hlu-KzP8Vyb8Bg11dig</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A Method for Registering Diffusion Weighted Magnetic Resonance Images</title><source>MEDLINE</source><source>Springer Books</source><creator>Tao, Xiaodong ; Miller, James V.</creator><contributor>Larsen, Rasmus ; Sporring, Jon ; Nielsen, Mads</contributor><creatorcontrib>Tao, Xiaodong ; Miller, James V. ; Larsen, Rasmus ; Sporring, Jon ; Nielsen, Mads</creatorcontrib><description>Diffusion weighted magnetic resonance (DWMR or DW) imaging is a fast evolving technique to investigate the connectivity of brain white matter by measuring the self-diffusion of the water molecules in the tissue. Registration is a key step in group analysis of the DW images that may lead to understanding of functional and structural variability of the normal brain, understanding disease process, and improving neurosurgical planning. In this paper, we present a new method for registering DW images. The method works directly on the diffusion weighted images without using tensor reconstruction, fiber tracking, and fiber clustering. Therefore, the performance of the method does not rely on the accuracy and robustness of these steps. Moreover, since all the information in the original diffusion weighted images is used for registration, the results of the method is robust to imaging noise. We demonstrate the method on intra-subject registration with an affine transform using DW images acquired on the same scanner with the same imaging protocol. Extension to deformable registration for images acquired on different scanners and/or with different imaging protocols is also discussed.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354044727X</identifier><identifier>ISBN: 9783540447276</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540447288</identifier><identifier>EISBN: 9783540447283</identifier><identifier>DOI: 10.1007/11866763_73</identifier><identifier>PMID: 17354821</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Brain - anatomy &amp; histology ; Brain White Matter ; Deformable Registration ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion Weight Magnetic Resonance Image ; Diffusion Weighted Image ; Fractional Anisotropy ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Subtraction Technique</subject><ispartof>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 2006, Vol.9 (Pt 2), p.594-602</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11866763_73$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11866763_73$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17354821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Larsen, Rasmus</contributor><contributor>Sporring, Jon</contributor><contributor>Nielsen, Mads</contributor><creatorcontrib>Tao, Xiaodong</creatorcontrib><creatorcontrib>Miller, James V.</creatorcontrib><title>A Method for Registering Diffusion Weighted Magnetic Resonance Images</title><title>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006</title><addtitle>Med Image Comput Comput Assist Interv</addtitle><description>Diffusion weighted magnetic resonance (DWMR or DW) imaging is a fast evolving technique to investigate the connectivity of brain white matter by measuring the self-diffusion of the water molecules in the tissue. Registration is a key step in group analysis of the DW images that may lead to understanding of functional and structural variability of the normal brain, understanding disease process, and improving neurosurgical planning. In this paper, we present a new method for registering DW images. The method works directly on the diffusion weighted images without using tensor reconstruction, fiber tracking, and fiber clustering. Therefore, the performance of the method does not rely on the accuracy and robustness of these steps. Moreover, since all the information in the original diffusion weighted images is used for registration, the results of the method is robust to imaging noise. We demonstrate the method on intra-subject registration with an affine transform using DW images acquired on the same scanner with the same imaging protocol. Extension to deformable registration for images acquired on different scanners and/or with different imaging protocols is also discussed.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain White Matter</subject><subject>Deformable Registration</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion Weight Magnetic Resonance Image</subject><subject>Diffusion Weighted Image</subject><subject>Fractional Anisotropy</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Subtraction Technique</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354044727X</isbn><isbn>9783540447276</isbn><isbn>3540447288</isbn><isbn>9783540447283</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid>EIF</sourceid><recordid>eNpNkEtPwzAQhM1LNJSeuCNfOQS8ceLHsSoFKrVCQiC4RY6zSQ00ieL0wL_HVUGwl5F2vl1phpALYNfAmLwBUEJIwXPJD8gZz1KWpjJR6pBEIABizlN99GfIt2MSMc6SWMuUj8jE-3cWJlNaaXFKRiADqhKIyHxKVzis25JWbU-fsHZ-wN41Nb11VbX1rm3oK7p6PWBJV6ZucHA2cL5tTGORLjamRn9OTirz6XHyo2Pycjd_nj3Ey8f7xWy6jDsOeogxAbTcMJUUyqpCCMjKKkGmFVirRJEaIyRjFrUJyxKSCo0NFyJ4mUo1H5PL_d9uW2ywzLvebUz_lf_mCcDVHvDdLgT2edG2Hz4Hlu-KzP8Vyb8Bg11dig</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Tao, Xiaodong</creator><creator>Miller, James V.</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>2006</creationdate><title>A Method for Registering Diffusion Weighted Magnetic Resonance Images</title><author>Tao, Xiaodong ; Miller, James V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p319t-e21ec3a082b8c8b6615df2e0981cc86b4aa6700ce9ae09d12feacec3686b58493</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain White Matter</topic><topic>Deformable Registration</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion Weight Magnetic Resonance Image</topic><topic>Diffusion Weighted Image</topic><topic>Fractional Anisotropy</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Subtraction Technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Xiaodong</creatorcontrib><creatorcontrib>Miller, James V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Xiaodong</au><au>Miller, James V.</au><au>Larsen, Rasmus</au><au>Sporring, Jon</au><au>Nielsen, Mads</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Method for Registering Diffusion Weighted Magnetic Resonance Images</atitle><btitle>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006</btitle><addtitle>Med Image Comput Comput Assist Interv</addtitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><volume>9</volume><issue>Pt 2</issue><spage>594</spage><epage>602</epage><pages>594-602</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354044727X</isbn><isbn>9783540447276</isbn><eisbn>3540447288</eisbn><eisbn>9783540447283</eisbn><abstract>Diffusion weighted magnetic resonance (DWMR or DW) imaging is a fast evolving technique to investigate the connectivity of brain white matter by measuring the self-diffusion of the water molecules in the tissue. Registration is a key step in group analysis of the DW images that may lead to understanding of functional and structural variability of the normal brain, understanding disease process, and improving neurosurgical planning. In this paper, we present a new method for registering DW images. The method works directly on the diffusion weighted images without using tensor reconstruction, fiber tracking, and fiber clustering. Therefore, the performance of the method does not rely on the accuracy and robustness of these steps. Moreover, since all the information in the original diffusion weighted images is used for registration, the results of the method is robust to imaging noise. We demonstrate the method on intra-subject registration with an affine transform using DW images acquired on the same scanner with the same imaging protocol. Extension to deformable registration for images acquired on different scanners and/or with different imaging protocols is also discussed.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>17354821</pmid><doi>10.1007/11866763_73</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 2006, Vol.9 (Pt 2), p.594-602
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11866763_73
source MEDLINE; Springer Books
subjects Algorithms
Artificial Intelligence
Brain - anatomy & histology
Brain White Matter
Deformable Registration
Diffusion Magnetic Resonance Imaging - methods
Diffusion Weight Magnetic Resonance Image
Diffusion Weighted Image
Fractional Anisotropy
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Subtraction Technique
title A Method for Registering Diffusion Weighted Magnetic Resonance Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A12%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Method%20for%20Registering%20Diffusion%20Weighted%20Magnetic%20Resonance%20Images&rft.btitle=Medical%20Image%20Computing%20and%20Computer-Assisted%20Intervention%20%E2%80%93%20MICCAI%202006&rft.au=Tao,%20Xiaodong&rft.date=2006&rft.volume=9&rft.issue=Pt%202&rft.spage=594&rft.epage=602&rft.pages=594-602&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354044727X&rft.isbn_list=9783540447276&rft_id=info:doi/10.1007/11866763_73&rft_dat=%3Cpubmed_sprin%3E17354821%3C/pubmed_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540447288&rft.eisbn_list=9783540447283&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/17354821&rfr_iscdi=true