Development of Safe Mechanism for Surgical Robots Using Equilibrium Point Control Method

This paper introduces a novel mechanism for surgical robotic systems to generate human arm-like compliant motion. The mechanism is based on the idea of the equilibrium point control hypothesis which claims that multi-joint limb movements are achieved by shifting the limbs’ equilibrium positions defi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006 2006, Vol.9 (Pt 1), p.570-577
Hauptverfasser: Park, Shinsuk, Lim, Hokjin, Kim, Byeong-sang, Song, Jae-bok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue Pt 1
container_start_page 570
container_title Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006
container_volume 9
creator Park, Shinsuk
Lim, Hokjin
Kim, Byeong-sang
Song, Jae-bok
description This paper introduces a novel mechanism for surgical robotic systems to generate human arm-like compliant motion. The mechanism is based on the idea of the equilibrium point control hypothesis which claims that multi-joint limb movements are achieved by shifting the limbs’ equilibrium positions defined by neuromuscular activity. The equilibrium point control can be implemented on a robot manipulator by installing two actuators at each joint of the manipulator, one to control the joint position, and the other to control the joint stiffness. This double-actuator mechanism allows us to arbitrarily manipulate the stiffness (or impedance) of a robotic manipulator as well as its position. Also, the force at the end-effector can be estimated based on joint stiffness and joint angle changes without using force transducers. A two-link manipulator and a three-link manipulator with the double-actuator units have been developed, and experiments and simulation results show the potential of the proposed approach. By creating the human arm-like behavior, this mechanism can improve the performance of robot manipulators to execute stable and safe movement in surgical environments by using a simple control scheme.
doi_str_mv 10.1007/11866565_70
format Article
fullrecord <record><control><sourceid>pubmed_sprin</sourceid><recordid>TN_cdi_springer_books_10_1007_11866565_70</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17354936</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-812fc2edf7d65515fa3e92d22c0e0930a7677036f20d43466a5b05f7a9a0b523</originalsourceid><addsrcrecordid>eNpNkL1PwzAUxM2XaCmd2JFXhsCzHdvJiEr5kIpAtEhskZPYrSGJg50g8d8TVBDc8ob73ZPuEDohcE4A5AUhiRBc8EzCDjpiPIY4lpCwXTQmgpCIsTjd-zMk30djYECjVMZshKYhvMIgRpJEpodoROSApkyM0cuV_tCVa2vddNgZvFRG43tdbFRjQ42N83jZ-7UtVIWfXO66gJ-DbdZ4_t7byube9jV-dHZIz1zTeVcN6W7jymN0YFQV9PTnTtDqer6a3UaLh5u72eUiaimhXZQQagqqSyNLwTnhRjGd0pLSAjSkDJQUUgIThkIZs1gIxXPgRqpUQc4pm6DT7du2z2tdZq23tfKf2W_DATjbAmGwmrX2We7cW8gIZN_TZv-mZV8nFWNF</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of Safe Mechanism for Surgical Robots Using Equilibrium Point Control Method</title><source>MEDLINE</source><source>Springer Books</source><creator>Park, Shinsuk ; Lim, Hokjin ; Kim, Byeong-sang ; Song, Jae-bok</creator><contributor>Larsen, Rasmus ; Sporring, Jon ; Nielsen, Mads</contributor><creatorcontrib>Park, Shinsuk ; Lim, Hokjin ; Kim, Byeong-sang ; Song, Jae-bok ; Larsen, Rasmus ; Sporring, Jon ; Nielsen, Mads</creatorcontrib><description>This paper introduces a novel mechanism for surgical robotic systems to generate human arm-like compliant motion. The mechanism is based on the idea of the equilibrium point control hypothesis which claims that multi-joint limb movements are achieved by shifting the limbs’ equilibrium positions defined by neuromuscular activity. The equilibrium point control can be implemented on a robot manipulator by installing two actuators at each joint of the manipulator, one to control the joint position, and the other to control the joint stiffness. This double-actuator mechanism allows us to arbitrarily manipulate the stiffness (or impedance) of a robotic manipulator as well as its position. Also, the force at the end-effector can be estimated based on joint stiffness and joint angle changes without using force transducers. A two-link manipulator and a three-link manipulator with the double-actuator units have been developed, and experiments and simulation results show the potential of the proposed approach. By creating the human arm-like behavior, this mechanism can improve the performance of robot manipulators to execute stable and safe movement in surgical environments by using a simple control scheme.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540447075</identifier><identifier>ISBN: 9783540447078</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540447083</identifier><identifier>EISBN: 9783540447085</identifier><identifier>DOI: 10.1007/11866565_70</identifier><identifier>PMID: 17354936</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomimetic Materials ; Computer-Aided Design ; Contact Force ; Equipment Design ; Equipment Failure Analysis ; Equipment Safety - instrumentation ; Equipment Safety - methods ; Humans ; Joint Stiffness ; Minimally Invasive Surgery ; Robot Manipulator ; Robotics - instrumentation ; Robotics - methods ; Surgery, Computer-Assisted - instrumentation ; Surgery, Computer-Assisted - methods ; Surgical Robot</subject><ispartof>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 2006, Vol.9 (Pt 1), p.570-577</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11866565_70$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11866565_70$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27923,38253,41440,42509</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17354936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Larsen, Rasmus</contributor><contributor>Sporring, Jon</contributor><contributor>Nielsen, Mads</contributor><creatorcontrib>Park, Shinsuk</creatorcontrib><creatorcontrib>Lim, Hokjin</creatorcontrib><creatorcontrib>Kim, Byeong-sang</creatorcontrib><creatorcontrib>Song, Jae-bok</creatorcontrib><title>Development of Safe Mechanism for Surgical Robots Using Equilibrium Point Control Method</title><title>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006</title><addtitle>Med Image Comput Comput Assist Interv</addtitle><description>This paper introduces a novel mechanism for surgical robotic systems to generate human arm-like compliant motion. The mechanism is based on the idea of the equilibrium point control hypothesis which claims that multi-joint limb movements are achieved by shifting the limbs’ equilibrium positions defined by neuromuscular activity. The equilibrium point control can be implemented on a robot manipulator by installing two actuators at each joint of the manipulator, one to control the joint position, and the other to control the joint stiffness. This double-actuator mechanism allows us to arbitrarily manipulate the stiffness (or impedance) of a robotic manipulator as well as its position. Also, the force at the end-effector can be estimated based on joint stiffness and joint angle changes without using force transducers. A two-link manipulator and a three-link manipulator with the double-actuator units have been developed, and experiments and simulation results show the potential of the proposed approach. By creating the human arm-like behavior, this mechanism can improve the performance of robot manipulators to execute stable and safe movement in surgical environments by using a simple control scheme.</description><subject>Biomimetic Materials</subject><subject>Computer-Aided Design</subject><subject>Contact Force</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Equipment Safety - instrumentation</subject><subject>Equipment Safety - methods</subject><subject>Humans</subject><subject>Joint Stiffness</subject><subject>Minimally Invasive Surgery</subject><subject>Robot Manipulator</subject><subject>Robotics - instrumentation</subject><subject>Robotics - methods</subject><subject>Surgery, Computer-Assisted - instrumentation</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Surgical Robot</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540447075</isbn><isbn>9783540447078</isbn><isbn>3540447083</isbn><isbn>9783540447085</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkL1PwzAUxM2XaCmd2JFXhsCzHdvJiEr5kIpAtEhskZPYrSGJg50g8d8TVBDc8ob73ZPuEDohcE4A5AUhiRBc8EzCDjpiPIY4lpCwXTQmgpCIsTjd-zMk30djYECjVMZshKYhvMIgRpJEpodoROSApkyM0cuV_tCVa2vddNgZvFRG43tdbFRjQ42N83jZ-7UtVIWfXO66gJ-DbdZ4_t7byube9jV-dHZIz1zTeVcN6W7jymN0YFQV9PTnTtDqer6a3UaLh5u72eUiaimhXZQQagqqSyNLwTnhRjGd0pLSAjSkDJQUUgIThkIZs1gIxXPgRqpUQc4pm6DT7du2z2tdZq23tfKf2W_DATjbAmGwmrX2We7cW8gIZN_TZv-mZV8nFWNF</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Park, Shinsuk</creator><creator>Lim, Hokjin</creator><creator>Kim, Byeong-sang</creator><creator>Song, Jae-bok</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>2006</creationdate><title>Development of Safe Mechanism for Surgical Robots Using Equilibrium Point Control Method</title><author>Park, Shinsuk ; Lim, Hokjin ; Kim, Byeong-sang ; Song, Jae-bok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-812fc2edf7d65515fa3e92d22c0e0930a7677036f20d43466a5b05f7a9a0b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biomimetic Materials</topic><topic>Computer-Aided Design</topic><topic>Contact Force</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Equipment Safety - instrumentation</topic><topic>Equipment Safety - methods</topic><topic>Humans</topic><topic>Joint Stiffness</topic><topic>Minimally Invasive Surgery</topic><topic>Robot Manipulator</topic><topic>Robotics - instrumentation</topic><topic>Robotics - methods</topic><topic>Surgery, Computer-Assisted - instrumentation</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Surgical Robot</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Shinsuk</creatorcontrib><creatorcontrib>Lim, Hokjin</creatorcontrib><creatorcontrib>Kim, Byeong-sang</creatorcontrib><creatorcontrib>Song, Jae-bok</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Shinsuk</au><au>Lim, Hokjin</au><au>Kim, Byeong-sang</au><au>Song, Jae-bok</au><au>Larsen, Rasmus</au><au>Sporring, Jon</au><au>Nielsen, Mads</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Safe Mechanism for Surgical Robots Using Equilibrium Point Control Method</atitle><jtitle>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006</jtitle><addtitle>Med Image Comput Comput Assist Interv</addtitle><date>2006</date><risdate>2006</risdate><volume>9</volume><issue>Pt 1</issue><spage>570</spage><epage>577</epage><pages>570-577</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540447075</isbn><isbn>9783540447078</isbn><eisbn>3540447083</eisbn><eisbn>9783540447085</eisbn><abstract>This paper introduces a novel mechanism for surgical robotic systems to generate human arm-like compliant motion. The mechanism is based on the idea of the equilibrium point control hypothesis which claims that multi-joint limb movements are achieved by shifting the limbs’ equilibrium positions defined by neuromuscular activity. The equilibrium point control can be implemented on a robot manipulator by installing two actuators at each joint of the manipulator, one to control the joint position, and the other to control the joint stiffness. This double-actuator mechanism allows us to arbitrarily manipulate the stiffness (or impedance) of a robotic manipulator as well as its position. Also, the force at the end-effector can be estimated based on joint stiffness and joint angle changes without using force transducers. A two-link manipulator and a three-link manipulator with the double-actuator units have been developed, and experiments and simulation results show the potential of the proposed approach. By creating the human arm-like behavior, this mechanism can improve the performance of robot manipulators to execute stable and safe movement in surgical environments by using a simple control scheme.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>17354936</pmid><doi>10.1007/11866565_70</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 2006, Vol.9 (Pt 1), p.570-577
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11866565_70
source MEDLINE; Springer Books
subjects Biomimetic Materials
Computer-Aided Design
Contact Force
Equipment Design
Equipment Failure Analysis
Equipment Safety - instrumentation
Equipment Safety - methods
Humans
Joint Stiffness
Minimally Invasive Surgery
Robot Manipulator
Robotics - instrumentation
Robotics - methods
Surgery, Computer-Assisted - instrumentation
Surgery, Computer-Assisted - methods
Surgical Robot
title Development of Safe Mechanism for Surgical Robots Using Equilibrium Point Control Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Safe%20Mechanism%20for%20Surgical%20Robots%20Using%20Equilibrium%20Point%20Control%20Method&rft.jtitle=Medical%20Image%20Computing%20and%20Computer-Assisted%20Intervention%20%E2%80%93%20MICCAI%202006&rft.au=Park,%20Shinsuk&rft.date=2006&rft.volume=9&rft.issue=Pt%201&rft.spage=570&rft.epage=577&rft.pages=570-577&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540447075&rft.isbn_list=9783540447078&rft_id=info:doi/10.1007/11866565_70&rft_dat=%3Cpubmed_sprin%3E17354936%3C/pubmed_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540447083&rft.eisbn_list=9783540447085&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/17354936&rfr_iscdi=true