4D Shape Priors for a Level Set Segmentation of the Left Myocardium in SPECT Sequences

We develop a 4D (3D plus time) statistical shape model for implicit level set based shape representations. To this end, we represent hand segmented training sequences of the left ventricle by respective 4-dimensional embedding functions and approximate these by a principal component analysis. In con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kohlberger, Timo, Cremers, Daniel, Rousson, Mikaël, Ramaraj, Ramamani, Funka-Lea, Gareth
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue Pt 1
container_start_page 92
container_title
container_volume 9
creator Kohlberger, Timo
Cremers, Daniel
Rousson, Mikaël
Ramaraj, Ramamani
Funka-Lea, Gareth
description We develop a 4D (3D plus time) statistical shape model for implicit level set based shape representations. To this end, we represent hand segmented training sequences of the left ventricle by respective 4-dimensional embedding functions and approximate these by a principal component analysis. In contrast to recent 4D models on explicit shape representations, the implicit shape model developed in this work does not require the computation of point correspondences which is known to be quite challenging, especially in higher dimensions. Experimental results on the segmentation of SPECT sequences of the left myocardium confirm that the 4D shape model outperforms respective 3D models, because it takes into account a statistical model of the temporal shape evolution.
doi_str_mv 10.1007/11866565_12
format Book Chapter
fullrecord <record><control><sourceid>pubmed_sprin</sourceid><recordid>TN_cdi_springer_books_10_1007_11866565_12</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17354878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e0e6144014bb41edfa47aa584b7b62ec29c48113da09ebfc28749a27ab37a7a3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc1LtJSu2CNvWQQ8sWM7SxTKQyqiUiu2kZ1M2kATFztF6t8TVBCMdDWLczTSXEIugF0DY-oGQEuZyCSH-ICc8UQwIRTT_JAMQQJEnIv06A-o5JgMGWdxlCrBB2Qcwhvrh4PWKj0lA1C9qpUekldxR-crs0E687XzgVbOU0On-IlrOseuz7LBtjNd7VrqKtqtsKdVR593rjC-rLcNrVs6n02yRS9_bLEtMJyTk8qsA45_9ogs7ieL7DGavjw8ZbfTqOASuggZShCCgbBWAJaVEcqYRAurrIyxiNNCaABeGpairYpYK5GaWBnLlVGGj8jl_uxmaxss842vG-N3-e9_vXC1F0KP2iX63Dr3HnJg-Xex-b9i-Rf2GGGl</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>4D Shape Priors for a Level Set Segmentation of the Left Myocardium in SPECT Sequences</title><source>MEDLINE</source><source>Springer Books</source><creator>Kohlberger, Timo ; Cremers, Daniel ; Rousson, Mikaël ; Ramaraj, Ramamani ; Funka-Lea, Gareth</creator><contributor>Larsen, Rasmus ; Sporring, Jon ; Nielsen, Mads</contributor><creatorcontrib>Kohlberger, Timo ; Cremers, Daniel ; Rousson, Mikaël ; Ramaraj, Ramamani ; Funka-Lea, Gareth ; Larsen, Rasmus ; Sporring, Jon ; Nielsen, Mads</creatorcontrib><description>We develop a 4D (3D plus time) statistical shape model for implicit level set based shape representations. To this end, we represent hand segmented training sequences of the left ventricle by respective 4-dimensional embedding functions and approximate these by a principal component analysis. In contrast to recent 4D models on explicit shape representations, the implicit shape model developed in this work does not require the computation of point correspondences which is known to be quite challenging, especially in higher dimensions. Experimental results on the segmentation of SPECT sequences of the left myocardium confirm that the 4D shape model outperforms respective 3D models, because it takes into account a statistical model of the temporal shape evolution.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540447075</identifier><identifier>ISBN: 9783540447078</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540447083</identifier><identifier>EISBN: 9783540447085</identifier><identifier>DOI: 10.1007/11866565_12</identifier><identifier>PMID: 17354878</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active Contour ; Algorithms ; Artificial Intelligence ; Computer Simulation ; Electrocardiography - methods ; Heart Ventricles - diagnostic imaging ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Models, Cardiovascular ; Pattern Recognition, Automated - methods ; Point Correspondence ; Reproducibility of Results ; Sensitivity and Specificity ; Shape Model ; SPECT Sequence ; Statistical Shape ; Subtraction Technique ; Time Factors ; Tomography, Emission-Computed, Single-Photon - methods ; Ventricular Dysfunction, Left - diagnostic imaging</subject><ispartof>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 2006, Vol.9 (Pt 1), p.92-100</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e0e6144014bb41edfa47aa584b7b62ec29c48113da09ebfc28749a27ab37a7a3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11866565_12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11866565_12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17354878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Larsen, Rasmus</contributor><contributor>Sporring, Jon</contributor><contributor>Nielsen, Mads</contributor><creatorcontrib>Kohlberger, Timo</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><creatorcontrib>Rousson, Mikaël</creatorcontrib><creatorcontrib>Ramaraj, Ramamani</creatorcontrib><creatorcontrib>Funka-Lea, Gareth</creatorcontrib><title>4D Shape Priors for a Level Set Segmentation of the Left Myocardium in SPECT Sequences</title><title>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006</title><addtitle>Med Image Comput Comput Assist Interv</addtitle><description>We develop a 4D (3D plus time) statistical shape model for implicit level set based shape representations. To this end, we represent hand segmented training sequences of the left ventricle by respective 4-dimensional embedding functions and approximate these by a principal component analysis. In contrast to recent 4D models on explicit shape representations, the implicit shape model developed in this work does not require the computation of point correspondences which is known to be quite challenging, especially in higher dimensions. Experimental results on the segmentation of SPECT sequences of the left myocardium confirm that the 4D shape model outperforms respective 3D models, because it takes into account a statistical model of the temporal shape evolution.</description><subject>Active Contour</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Simulation</subject><subject>Electrocardiography - methods</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Models, Cardiovascular</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Point Correspondence</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Shape Model</subject><subject>SPECT Sequence</subject><subject>Statistical Shape</subject><subject>Subtraction Technique</subject><subject>Time Factors</subject><subject>Tomography, Emission-Computed, Single-Photon - methods</subject><subject>Ventricular Dysfunction, Left - diagnostic imaging</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540447075</isbn><isbn>9783540447078</isbn><isbn>3540447083</isbn><isbn>9783540447085</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtOwzAQRc1LtJSu2CNvWQQ8sWM7SxTKQyqiUiu2kZ1M2kATFztF6t8TVBCMdDWLczTSXEIugF0DY-oGQEuZyCSH-ICc8UQwIRTT_JAMQQJEnIv06A-o5JgMGWdxlCrBB2Qcwhvrh4PWKj0lA1C9qpUekldxR-crs0E687XzgVbOU0On-IlrOseuz7LBtjNd7VrqKtqtsKdVR593rjC-rLcNrVs6n02yRS9_bLEtMJyTk8qsA45_9ogs7ieL7DGavjw8ZbfTqOASuggZShCCgbBWAJaVEcqYRAurrIyxiNNCaABeGpairYpYK5GaWBnLlVGGj8jl_uxmaxss842vG-N3-e9_vXC1F0KP2iX63Dr3HnJg-Xex-b9i-Rf2GGGl</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kohlberger, Timo</creator><creator>Cremers, Daniel</creator><creator>Rousson, Mikaël</creator><creator>Ramaraj, Ramamani</creator><creator>Funka-Lea, Gareth</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>2006</creationdate><title>4D Shape Priors for a Level Set Segmentation of the Left Myocardium in SPECT Sequences</title><author>Kohlberger, Timo ; Cremers, Daniel ; Rousson, Mikaël ; Ramaraj, Ramamani ; Funka-Lea, Gareth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e0e6144014bb41edfa47aa584b7b62ec29c48113da09ebfc28749a27ab37a7a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Active Contour</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Simulation</topic><topic>Electrocardiography - methods</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Models, Cardiovascular</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Point Correspondence</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Shape Model</topic><topic>SPECT Sequence</topic><topic>Statistical Shape</topic><topic>Subtraction Technique</topic><topic>Time Factors</topic><topic>Tomography, Emission-Computed, Single-Photon - methods</topic><topic>Ventricular Dysfunction, Left - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kohlberger, Timo</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><creatorcontrib>Rousson, Mikaël</creatorcontrib><creatorcontrib>Ramaraj, Ramamani</creatorcontrib><creatorcontrib>Funka-Lea, Gareth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kohlberger, Timo</au><au>Cremers, Daniel</au><au>Rousson, Mikaël</au><au>Ramaraj, Ramamani</au><au>Funka-Lea, Gareth</au><au>Larsen, Rasmus</au><au>Sporring, Jon</au><au>Nielsen, Mads</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>4D Shape Priors for a Level Set Segmentation of the Left Myocardium in SPECT Sequences</atitle><btitle>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006</btitle><addtitle>Med Image Comput Comput Assist Interv</addtitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><volume>9</volume><issue>Pt 1</issue><spage>92</spage><epage>100</epage><pages>92-100</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540447075</isbn><isbn>9783540447078</isbn><eisbn>3540447083</eisbn><eisbn>9783540447085</eisbn><abstract>We develop a 4D (3D plus time) statistical shape model for implicit level set based shape representations. To this end, we represent hand segmented training sequences of the left ventricle by respective 4-dimensional embedding functions and approximate these by a principal component analysis. In contrast to recent 4D models on explicit shape representations, the implicit shape model developed in this work does not require the computation of point correspondences which is known to be quite challenging, especially in higher dimensions. Experimental results on the segmentation of SPECT sequences of the left myocardium confirm that the 4D shape model outperforms respective 3D models, because it takes into account a statistical model of the temporal shape evolution.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>17354878</pmid><doi>10.1007/11866565_12</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 2006, Vol.9 (Pt 1), p.92-100
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11866565_12
source MEDLINE; Springer Books
subjects Active Contour
Algorithms
Artificial Intelligence
Computer Simulation
Electrocardiography - methods
Heart Ventricles - diagnostic imaging
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Models, Cardiovascular
Pattern Recognition, Automated - methods
Point Correspondence
Reproducibility of Results
Sensitivity and Specificity
Shape Model
SPECT Sequence
Statistical Shape
Subtraction Technique
Time Factors
Tomography, Emission-Computed, Single-Photon - methods
Ventricular Dysfunction, Left - diagnostic imaging
title 4D Shape Priors for a Level Set Segmentation of the Left Myocardium in SPECT Sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=4D%20Shape%20Priors%20for%20a%20Level%20Set%20Segmentation%20of%20the%20Left%20Myocardium%20in%20SPECT%20Sequences&rft.btitle=Medical%20Image%20Computing%20and%20Computer-Assisted%20Intervention%20%E2%80%93%20MICCAI%202006&rft.au=Kohlberger,%20Timo&rft.date=2006&rft.volume=9&rft.issue=Pt%201&rft.spage=92&rft.epage=100&rft.pages=92-100&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540447075&rft.isbn_list=9783540447078&rft_id=info:doi/10.1007/11866565_12&rft_dat=%3Cpubmed_sprin%3E17354878%3C/pubmed_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540447083&rft.eisbn_list=9783540447085&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/17354878&rfr_iscdi=true