Complexity of Semialgebraic Proofs with Restricted Degree of Falsity
A weakened version of the Cutting Plane (CP) proof system with a restriction on the degree of falsity of intermediate inequalities was introduced by Goerdt. He proved an exponential lower bound for CP proofs with degree of falsity bounded by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepac...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | |
container_volume | |
creator | Kojevnikov, Arist Kulikov, Alexander S. |
description | A weakened version of the Cutting Plane (CP) proof system with a restriction on the degree of falsity of intermediate inequalities was introduced by Goerdt. He proved an exponential lower bound for CP proofs with degree of falsity bounded by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frac{n}{\log^{2n}+1}}$\end{document}, where n is the number of variables. Hirsch and Nikolenko strengthened this result by establishing a direct connection between CP and Res(k) proofs. This result implies an exponential lower bound on the proof length of the Tseitin-Urquhart tautologies, when the degree of falsity is bounded by cn for some constant c.
In this paper we generalize this result for extensions of Lovász-Schrijver calculi (LS), namely for LSk+CPk proof systems introduced by Grigoriev et al. We show that any LSk+CPk proof with bounded degree of falsity can be transformed into a Res(k) proof. We also prove lower and upper bounds for the new system. |
doi_str_mv | 10.1007/11814948_3 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11814948_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11814948_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-s188t-776d6420264dc341ff3ef1c88bf741592109cb55f7eb4b217f1f172a27a156c23</originalsourceid><addsrcrecordid>eNpFkDtPwzAUhc1LIi1d-AUZWQL32o6vPaKUAlIlEI85ihM7GFpcxZGAf08rQEznSOcxfIydIpwjAF0gapRG6lrssYkoJQjiQOU-y1AhFkJIc8BmhvRfptQhy0AALwxJccwmKb0CACfDMzav4nqzcp9h_Mqjzx_dOjSr3tmhCW1-P8ToU_4Rxpf8waVxCO3ounzu-sG5XX3RrNJ2ecKO_Na52a9O2fPi6qm6KZZ317fV5bJIqPVYEKlOSQ5cya4VEr0XzmOrtfUksTQcwbS2LD05Ky1H8uiReMOpwVK1XEzZ2c9v2gzhvXdDbWN8SzVCvUNT_6MR38kQUF4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Complexity of Semialgebraic Proofs with Restricted Degree of Falsity</title><source>Springer Books</source><creator>Kojevnikov, Arist ; Kulikov, Alexander S.</creator><contributor>Biere, Armin ; Gomes, Carla P.</contributor><creatorcontrib>Kojevnikov, Arist ; Kulikov, Alexander S. ; Biere, Armin ; Gomes, Carla P.</creatorcontrib><description>A weakened version of the Cutting Plane (CP) proof system with a restriction on the degree of falsity of intermediate inequalities was introduced by Goerdt. He proved an exponential lower bound for CP proofs with degree of falsity bounded by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frac{n}{\log^{2n}+1}}$\end{document}, where n is the number of variables. Hirsch and Nikolenko strengthened this result by establishing a direct connection between CP and Res(k) proofs. This result implies an exponential lower bound on the proof length of the Tseitin-Urquhart tautologies, when the degree of falsity is bounded by cn for some constant c.
In this paper we generalize this result for extensions of Lovász-Schrijver calculi (LS), namely for LSk+CPk proof systems introduced by Grigoriev et al. We show that any LSk+CPk proof with bounded degree of falsity can be transformed into a Res(k) proof. We also prove lower and upper bounds for the new system.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540372066</identifier><identifier>ISBN: 3540372067</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540372075</identifier><identifier>EISBN: 9783540372073</identifier><identifier>DOI: 10.1007/11814948_3</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Theory and Applications of Satisfiability Testing - SAT 2006, 2006, p.11-21</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11814948_3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11814948_3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>776,777,781,790,27906,38236,41423,42492</link.rule.ids></links><search><contributor>Biere, Armin</contributor><contributor>Gomes, Carla P.</contributor><creatorcontrib>Kojevnikov, Arist</creatorcontrib><creatorcontrib>Kulikov, Alexander S.</creatorcontrib><title>Complexity of Semialgebraic Proofs with Restricted Degree of Falsity</title><title>Theory and Applications of Satisfiability Testing - SAT 2006</title><description>A weakened version of the Cutting Plane (CP) proof system with a restriction on the degree of falsity of intermediate inequalities was introduced by Goerdt. He proved an exponential lower bound for CP proofs with degree of falsity bounded by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frac{n}{\log^{2n}+1}}$\end{document}, where n is the number of variables. Hirsch and Nikolenko strengthened this result by establishing a direct connection between CP and Res(k) proofs. This result implies an exponential lower bound on the proof length of the Tseitin-Urquhart tautologies, when the degree of falsity is bounded by cn for some constant c.
In this paper we generalize this result for extensions of Lovász-Schrijver calculi (LS), namely for LSk+CPk proof systems introduced by Grigoriev et al. We show that any LSk+CPk proof with bounded degree of falsity can be transformed into a Res(k) proof. We also prove lower and upper bounds for the new system.</description><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540372066</isbn><isbn>3540372067</isbn><isbn>3540372075</isbn><isbn>9783540372073</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkDtPwzAUhc1LIi1d-AUZWQL32o6vPaKUAlIlEI85ihM7GFpcxZGAf08rQEznSOcxfIydIpwjAF0gapRG6lrssYkoJQjiQOU-y1AhFkJIc8BmhvRfptQhy0AALwxJccwmKb0CACfDMzav4nqzcp9h_Mqjzx_dOjSr3tmhCW1-P8ToU_4Rxpf8waVxCO3ounzu-sG5XX3RrNJ2ecKO_Na52a9O2fPi6qm6KZZ317fV5bJIqPVYEKlOSQ5cya4VEr0XzmOrtfUksTQcwbS2LD05Ky1H8uiReMOpwVK1XEzZ2c9v2gzhvXdDbWN8SzVCvUNT_6MR38kQUF4</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kojevnikov, Arist</creator><creator>Kulikov, Alexander S.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>Complexity of Semialgebraic Proofs with Restricted Degree of Falsity</title><author>Kojevnikov, Arist ; Kulikov, Alexander S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s188t-776d6420264dc341ff3ef1c88bf741592109cb55f7eb4b217f1f172a27a156c23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kojevnikov, Arist</creatorcontrib><creatorcontrib>Kulikov, Alexander S.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kojevnikov, Arist</au><au>Kulikov, Alexander S.</au><au>Biere, Armin</au><au>Gomes, Carla P.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Complexity of Semialgebraic Proofs with Restricted Degree of Falsity</atitle><btitle>Theory and Applications of Satisfiability Testing - SAT 2006</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>11</spage><epage>21</epage><pages>11-21</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540372066</isbn><isbn>3540372067</isbn><eisbn>3540372075</eisbn><eisbn>9783540372073</eisbn><abstract>A weakened version of the Cutting Plane (CP) proof system with a restriction on the degree of falsity of intermediate inequalities was introduced by Goerdt. He proved an exponential lower bound for CP proofs with degree of falsity bounded by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frac{n}{\log^{2n}+1}}$\end{document}, where n is the number of variables. Hirsch and Nikolenko strengthened this result by establishing a direct connection between CP and Res(k) proofs. This result implies an exponential lower bound on the proof length of the Tseitin-Urquhart tautologies, when the degree of falsity is bounded by cn for some constant c.
In this paper we generalize this result for extensions of Lovász-Schrijver calculi (LS), namely for LSk+CPk proof systems introduced by Grigoriev et al. We show that any LSk+CPk proof with bounded degree of falsity can be transformed into a Res(k) proof. We also prove lower and upper bounds for the new system.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11814948_3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Theory and Applications of Satisfiability Testing - SAT 2006, 2006, p.11-21 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_11814948_3 |
source | Springer Books |
title | Complexity of Semialgebraic Proofs with Restricted Degree of Falsity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Complexity%20of%20Semialgebraic%20Proofs%20with%20Restricted%20Degree%20of%20Falsity&rft.btitle=Theory%20and%20Applications%20of%20Satisfiability%20Testing%20-%20SAT%202006&rft.au=Kojevnikov,%20Arist&rft.date=2006&rft.spage=11&rft.epage=21&rft.pages=11-21&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540372066&rft.isbn_list=3540372067&rft_id=info:doi/10.1007/11814948_3&rft_dat=%3Cspringer%3Espringer_books_10_1007_11814948_3%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540372075&rft.eisbn_list=9783540372073&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |