Estimation of the Future Earthquake Situation by Using Neural Networks Ensemble

Earthquakes will do great harms to the people, to estimate the future earthquake situation in Chinese mainland is still an open issue. There have been previous attempts to solve this problem by using artificial neural networks. In this paper, a novel algorithm named MIFEB is proposed to improve the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Tian-Yu, Li, Guo-Zheng, Liu, Yue, Wu, Geng-Feng, Wang, Wei
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1236
container_issue
container_start_page 1231
container_title
container_volume
creator Liu, Tian-Yu
Li, Guo-Zheng
Liu, Yue
Wu, Geng-Feng
Wang, Wei
description Earthquakes will do great harms to the people, to estimate the future earthquake situation in Chinese mainland is still an open issue. There have been previous attempts to solve this problem by using artificial neural networks. In this paper, a novel algorithm named MIFEB is proposed to improve the estimation accuracy by combing bagging of neural networks with mutual information based feature selection for its individuals. MIFEB is compared with the general case of bagging on UCI data sets, then, MIFEB is used to forecast the seismicity of strong earthquakes in Chinese mainland, computation results show that MIFEB obtains higher accuracy than other several methods like bagging of neural networks and single neural networks do.
doi_str_mv 10.1007/11760191_179
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11760191_179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11760191_179</sourcerecordid><originalsourceid>FETCH-LOGICAL-s190t-8107eb98f192cb1b00de087dab4e11e5f37a5f5b2313df4bf374f48fb47163f93</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhM2fRCi98QA-IwV2s04cH1GVAlJFD9BzZBObhqQJxI5Q356gcoDTp9GMRqNh7ArhBgHkLaLMABWWKNURmyuZUyqAhMhJHLMIM8SYSKiTf14iT1kEBEmspKBzduH9OwAkUiURWxc-1Dsd6r7jveNha_lyDONgeaGHsP0cdWP5cx3GQ8Ts-cbX3Rt_suOg2wnhqx8az4vO251p7SU7c7r1dv7LGdssi5fFQ7xa3z8u7laxRwUhzhGkNSp3qJJXgwagspDLShthEW3qSOrUpSYhpMoJM2nhRO6MkJiRUzRj14de_zFMe-xQmr5vfIlQ_lxV_r2KvgE2YFa1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Estimation of the Future Earthquake Situation by Using Neural Networks Ensemble</title><source>Springer Books</source><creator>Liu, Tian-Yu ; Li, Guo-Zheng ; Liu, Yue ; Wu, Geng-Feng ; Wang, Wei</creator><contributor>Zurada, Jacek M. ; Lu, Bao-Liang ; Yi, Zhang ; Yin, Hujun ; Wang, Jun</contributor><creatorcontrib>Liu, Tian-Yu ; Li, Guo-Zheng ; Liu, Yue ; Wu, Geng-Feng ; Wang, Wei ; Zurada, Jacek M. ; Lu, Bao-Liang ; Yi, Zhang ; Yin, Hujun ; Wang, Jun</creatorcontrib><description>Earthquakes will do great harms to the people, to estimate the future earthquake situation in Chinese mainland is still an open issue. There have been previous attempts to solve this problem by using artificial neural networks. In this paper, a novel algorithm named MIFEB is proposed to improve the estimation accuracy by combing bagging of neural networks with mutual information based feature selection for its individuals. MIFEB is compared with the general case of bagging on UCI data sets, then, MIFEB is used to forecast the seismicity of strong earthquakes in Chinese mainland, computation results show that MIFEB obtains higher accuracy than other several methods like bagging of neural networks and single neural networks do.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540344827</identifier><identifier>ISBN: 3540344829</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540344834</identifier><identifier>EISBN: 3540344837</identifier><identifier>DOI: 10.1007/11760191_179</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Feature Selection ; Feature Selection Method ; Mutual Information ; Neural Network ; Strong Earthquake</subject><ispartof>Advances in Neural Networks - ISNN 2006, 2006, p.1231-1236</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11760191_179$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11760191_179$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Zurada, Jacek M.</contributor><contributor>Lu, Bao-Liang</contributor><contributor>Yi, Zhang</contributor><contributor>Yin, Hujun</contributor><contributor>Wang, Jun</contributor><creatorcontrib>Liu, Tian-Yu</creatorcontrib><creatorcontrib>Li, Guo-Zheng</creatorcontrib><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Wu, Geng-Feng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>Estimation of the Future Earthquake Situation by Using Neural Networks Ensemble</title><title>Advances in Neural Networks - ISNN 2006</title><description>Earthquakes will do great harms to the people, to estimate the future earthquake situation in Chinese mainland is still an open issue. There have been previous attempts to solve this problem by using artificial neural networks. In this paper, a novel algorithm named MIFEB is proposed to improve the estimation accuracy by combing bagging of neural networks with mutual information based feature selection for its individuals. MIFEB is compared with the general case of bagging on UCI data sets, then, MIFEB is used to forecast the seismicity of strong earthquakes in Chinese mainland, computation results show that MIFEB obtains higher accuracy than other several methods like bagging of neural networks and single neural networks do.</description><subject>Feature Selection</subject><subject>Feature Selection Method</subject><subject>Mutual Information</subject><subject>Neural Network</subject><subject>Strong Earthquake</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540344827</isbn><isbn>3540344829</isbn><isbn>9783540344834</isbn><isbn>3540344837</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpVkM1OwzAQhM2fRCi98QA-IwV2s04cH1GVAlJFD9BzZBObhqQJxI5Q356gcoDTp9GMRqNh7ArhBgHkLaLMABWWKNURmyuZUyqAhMhJHLMIM8SYSKiTf14iT1kEBEmspKBzduH9OwAkUiURWxc-1Dsd6r7jveNha_lyDONgeaGHsP0cdWP5cx3GQ8Ts-cbX3Rt_suOg2wnhqx8az4vO251p7SU7c7r1dv7LGdssi5fFQ7xa3z8u7laxRwUhzhGkNSp3qJJXgwagspDLShthEW3qSOrUpSYhpMoJM2nhRO6MkJiRUzRj14de_zFMe-xQmr5vfIlQ_lxV_r2KvgE2YFa1</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Liu, Tian-Yu</creator><creator>Li, Guo-Zheng</creator><creator>Liu, Yue</creator><creator>Wu, Geng-Feng</creator><creator>Wang, Wei</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>Estimation of the Future Earthquake Situation by Using Neural Networks Ensemble</title><author>Liu, Tian-Yu ; Li, Guo-Zheng ; Liu, Yue ; Wu, Geng-Feng ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s190t-8107eb98f192cb1b00de087dab4e11e5f37a5f5b2313df4bf374f48fb47163f93</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Feature Selection</topic><topic>Feature Selection Method</topic><topic>Mutual Information</topic><topic>Neural Network</topic><topic>Strong Earthquake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tian-Yu</creatorcontrib><creatorcontrib>Li, Guo-Zheng</creatorcontrib><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Wu, Geng-Feng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tian-Yu</au><au>Li, Guo-Zheng</au><au>Liu, Yue</au><au>Wu, Geng-Feng</au><au>Wang, Wei</au><au>Zurada, Jacek M.</au><au>Lu, Bao-Liang</au><au>Yi, Zhang</au><au>Yin, Hujun</au><au>Wang, Jun</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Estimation of the Future Earthquake Situation by Using Neural Networks Ensemble</atitle><btitle>Advances in Neural Networks - ISNN 2006</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>1231</spage><epage>1236</epage><pages>1231-1236</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540344827</isbn><isbn>3540344829</isbn><eisbn>9783540344834</eisbn><eisbn>3540344837</eisbn><abstract>Earthquakes will do great harms to the people, to estimate the future earthquake situation in Chinese mainland is still an open issue. There have been previous attempts to solve this problem by using artificial neural networks. In this paper, a novel algorithm named MIFEB is proposed to improve the estimation accuracy by combing bagging of neural networks with mutual information based feature selection for its individuals. MIFEB is compared with the general case of bagging on UCI data sets, then, MIFEB is used to forecast the seismicity of strong earthquakes in Chinese mainland, computation results show that MIFEB obtains higher accuracy than other several methods like bagging of neural networks and single neural networks do.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11760191_179</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Neural Networks - ISNN 2006, 2006, p.1231-1236
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11760191_179
source Springer Books
subjects Feature Selection
Feature Selection Method
Mutual Information
Neural Network
Strong Earthquake
title Estimation of the Future Earthquake Situation by Using Neural Networks Ensemble
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Estimation%20of%20the%20Future%20Earthquake%20Situation%20by%20Using%20Neural%20Networks%20Ensemble&rft.btitle=Advances%20in%20Neural%20Networks%20-%20ISNN%202006&rft.au=Liu,%20Tian-Yu&rft.date=2006&rft.spage=1231&rft.epage=1236&rft.pages=1231-1236&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540344827&rft.isbn_list=3540344829&rft_id=info:doi/10.1007/11760191_179&rft_dat=%3Cspringer%3Espringer_books_10_1007_11760191_179%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540344834&rft.eisbn_list=3540344837&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true