Conjugacy and Equivalence of Weighted Automata and Functional Transducers
We show that two equivalent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{K}$\end{document}-automata are conj...
Gespeichert in:
Veröffentlicht in: | Computer Science – Theory and Applications 2006, p.58-69 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | |
container_start_page | 58 |
container_title | Computer Science – Theory and Applications |
container_volume | |
creator | Béal, Marie-Pierre Lombardy, Sylvain Sakarovitch, Jacques |
description | We show that two equivalent \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{K}$\end{document}-automata are conjugate to a third one, when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{K}$\end{document} is equal to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{B, N, Z}$\end{document}, or any (skew) field and that the same holds true for functional tranducers as well. |
doi_str_mv | 10.1007/11753728_9 |
format | Article |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11753728_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11753728_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-b500b988b861f2399cbf9c2061c0a3c5e502b4afc9d89ef6d3144854b4e2d10a3</originalsourceid><addsrcrecordid>eNpFkDtPwzAURs1LopQs_IKMLIF7bcfxHauqhUqVWIoYI9txQiA4ECdI_PvyFNM3fEdnOIxdIFwhQHGNWOSi4LqkA5ZQoUUuQUhUGg7ZDBViJoSkI3b2dyh9zGYggGdUSHHKkhhbC4BEhRJqxjbLPjxNjXEfqQlVunqb2nfT-eB82tfpg2-bx9FX6WIa-xczmm9oPQU3tn0wXbobTIjV5PwQz9lJbbrok9-ds_v1are8zbZ3N5vlYps5zmnMbA5gSWurFdZcEDlbk-Og0IERLvc5cCtN7ajS5GtVCZRS59JKzyv8RObs8scbX4c2NH4obd8_xxKh_EpU_icSe78kU6c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conjugacy and Equivalence of Weighted Automata and Functional Transducers</title><source>Springer Books</source><creator>Béal, Marie-Pierre ; Lombardy, Sylvain ; Sakarovitch, Jacques</creator><contributor>Harrison, John ; Hirsch, Edward A. ; Grigoriev, Dima</contributor><creatorcontrib>Béal, Marie-Pierre ; Lombardy, Sylvain ; Sakarovitch, Jacques ; Harrison, John ; Hirsch, Edward A. ; Grigoriev, Dima</creatorcontrib><description>We show that two equivalent \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{K}$\end{document}-automata are conjugate to a third one, when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{K}$\end{document} is equal to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{B, N, Z}$\end{document}, or any (skew) field and that the same holds true for functional tranducers as well.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540341668</identifier><identifier>ISBN: 9783540341666</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540341680</identifier><identifier>EISBN: 3540341684</identifier><identifier>DOI: 10.1007/11753728_9</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Computer Science – Theory and Applications, 2006, p.58-69</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-b500b988b861f2399cbf9c2061c0a3c5e502b4afc9d89ef6d3144854b4e2d10a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11753728_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11753728_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Harrison, John</contributor><contributor>Hirsch, Edward A.</contributor><contributor>Grigoriev, Dima</contributor><creatorcontrib>Béal, Marie-Pierre</creatorcontrib><creatorcontrib>Lombardy, Sylvain</creatorcontrib><creatorcontrib>Sakarovitch, Jacques</creatorcontrib><title>Conjugacy and Equivalence of Weighted Automata and Functional Transducers</title><title>Computer Science – Theory and Applications</title><description>We show that two equivalent \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{K}$\end{document}-automata are conjugate to a third one, when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{K}$\end{document} is equal to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{B, N, Z}$\end{document}, or any (skew) field and that the same holds true for functional tranducers as well.</description><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540341668</isbn><isbn>9783540341666</isbn><isbn>9783540341680</isbn><isbn>3540341684</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkDtPwzAURs1LopQs_IKMLIF7bcfxHauqhUqVWIoYI9txQiA4ECdI_PvyFNM3fEdnOIxdIFwhQHGNWOSi4LqkA5ZQoUUuQUhUGg7ZDBViJoSkI3b2dyh9zGYggGdUSHHKkhhbC4BEhRJqxjbLPjxNjXEfqQlVunqb2nfT-eB82tfpg2-bx9FX6WIa-xczmm9oPQU3tn0wXbobTIjV5PwQz9lJbbrok9-ds_v1are8zbZ3N5vlYps5zmnMbA5gSWurFdZcEDlbk-Og0IERLvc5cCtN7ajS5GtVCZRS59JKzyv8RObs8scbX4c2NH4obd8_xxKh_EpU_icSe78kU6c</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Béal, Marie-Pierre</creator><creator>Lombardy, Sylvain</creator><creator>Sakarovitch, Jacques</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>Conjugacy and Equivalence of Weighted Automata and Functional Transducers</title><author>Béal, Marie-Pierre ; Lombardy, Sylvain ; Sakarovitch, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-b500b988b861f2399cbf9c2061c0a3c5e502b4afc9d89ef6d3144854b4e2d10a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Béal, Marie-Pierre</creatorcontrib><creatorcontrib>Lombardy, Sylvain</creatorcontrib><creatorcontrib>Sakarovitch, Jacques</creatorcontrib><jtitle>Computer Science – Theory and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Béal, Marie-Pierre</au><au>Lombardy, Sylvain</au><au>Sakarovitch, Jacques</au><au>Harrison, John</au><au>Hirsch, Edward A.</au><au>Grigoriev, Dima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugacy and Equivalence of Weighted Automata and Functional Transducers</atitle><jtitle>Computer Science – Theory and Applications</jtitle><date>2006</date><risdate>2006</risdate><spage>58</spage><epage>69</epage><pages>58-69</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540341668</isbn><isbn>9783540341666</isbn><eisbn>9783540341680</eisbn><eisbn>3540341684</eisbn><abstract>We show that two equivalent \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{K}$\end{document}-automata are conjugate to a third one, when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{K}$\end{document} is equal to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{B, N, Z}$\end{document}, or any (skew) field and that the same holds true for functional tranducers as well.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11753728_9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computer Science – Theory and Applications, 2006, p.58-69 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_11753728_9 |
source | Springer Books |
title | Conjugacy and Equivalence of Weighted Automata and Functional Transducers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugacy%20and%20Equivalence%20of%20Weighted%20Automata%20and%20Functional%20Transducers&rft.jtitle=Computer%20Science%20%E2%80%93%20Theory%20and%20Applications&rft.au=B%C3%A9al,%20Marie-Pierre&rft.date=2006&rft.spage=58&rft.epage=69&rft.pages=58-69&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540341668&rft.isbn_list=9783540341666&rft_id=info:doi/10.1007/11753728_9&rft_dat=%3Cspringer%3Espringer_books_10_1007_11753728_9%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540341680&rft.eisbn_list=3540341684&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |