Extended Resolution Proofs for Conjoining BDDs

We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer Science – Theory and Applications 2006, p.600-611
Hauptverfasser: Sinz, Carsten, Biere, Armin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 611
container_issue
container_start_page 600
container_title Computer Science – Theory and Applications
container_volume
creator Sinz, Carsten
Biere, Armin
description We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution.
doi_str_mv 10.1007/11753728_60
format Article
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11753728_60</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11753728_60</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-cf5045042b9d98ad6112b6c23cdbfa2402758fa9bdf94dd22fd9741a3987c7113</originalsourceid><addsrcrecordid>eNpNkEtLxEAQhNsXuK45-Qdy9ZC1e3oyj6Nm1wcsKKLnkMlkJLpkJBPBn29EBaGgDgVVHwVwRrgiRH1BpEvWwtQK9yCz2nApkSUpg_uwIEVUMEt7ACd_gTKHsEBGUVgt-RiylHqHSNZqxWoBq83n1A2-8_ljl-LuY-rjkD-MMYaUhzjmVRxeYz_0w0t-tV6nUzgKzS512a8v4fl681TdFtv7m7vqclskMnYq2lCinCWc9dY0fgYTTrWCW-9CIyQKXZrQWOeDld4LEfyMRw1bo1tNxEs4_-lN7-O83Y21i_Et1YT19xH1vyP4C0s-SbU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extended Resolution Proofs for Conjoining BDDs</title><source>Springer Books</source><creator>Sinz, Carsten ; Biere, Armin</creator><contributor>Harrison, John ; Hirsch, Edward A. ; Grigoriev, Dima</contributor><creatorcontrib>Sinz, Carsten ; Biere, Armin ; Harrison, John ; Hirsch, Edward A. ; Grigoriev, Dima</creatorcontrib><description>We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540341668</identifier><identifier>ISBN: 9783540341666</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540341680</identifier><identifier>EISBN: 3540341684</identifier><identifier>DOI: 10.1007/11753728_60</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Binary Decision Diagram ; Cache Line ; Conjunctive Normal Form ; Empty Clause ; Trace Format</subject><ispartof>Computer Science – Theory and Applications, 2006, p.600-611</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11753728_60$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11753728_60$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27924,38254,41441,42510</link.rule.ids></links><search><contributor>Harrison, John</contributor><contributor>Hirsch, Edward A.</contributor><contributor>Grigoriev, Dima</contributor><creatorcontrib>Sinz, Carsten</creatorcontrib><creatorcontrib>Biere, Armin</creatorcontrib><title>Extended Resolution Proofs for Conjoining BDDs</title><title>Computer Science – Theory and Applications</title><description>We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution.</description><subject>Binary Decision Diagram</subject><subject>Cache Line</subject><subject>Conjunctive Normal Form</subject><subject>Empty Clause</subject><subject>Trace Format</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540341668</isbn><isbn>9783540341666</isbn><isbn>9783540341680</isbn><isbn>3540341684</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkEtLxEAQhNsXuK45-Qdy9ZC1e3oyj6Nm1wcsKKLnkMlkJLpkJBPBn29EBaGgDgVVHwVwRrgiRH1BpEvWwtQK9yCz2nApkSUpg_uwIEVUMEt7ACd_gTKHsEBGUVgt-RiylHqHSNZqxWoBq83n1A2-8_ljl-LuY-rjkD-MMYaUhzjmVRxeYz_0w0t-tV6nUzgKzS512a8v4fl681TdFtv7m7vqclskMnYq2lCinCWc9dY0fgYTTrWCW-9CIyQKXZrQWOeDld4LEfyMRw1bo1tNxEs4_-lN7-O83Y21i_Et1YT19xH1vyP4C0s-SbU</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Sinz, Carsten</creator><creator>Biere, Armin</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>Extended Resolution Proofs for Conjoining BDDs</title><author>Sinz, Carsten ; Biere, Armin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-cf5045042b9d98ad6112b6c23cdbfa2402758fa9bdf94dd22fd9741a3987c7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Binary Decision Diagram</topic><topic>Cache Line</topic><topic>Conjunctive Normal Form</topic><topic>Empty Clause</topic><topic>Trace Format</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinz, Carsten</creatorcontrib><creatorcontrib>Biere, Armin</creatorcontrib><jtitle>Computer Science – Theory and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinz, Carsten</au><au>Biere, Armin</au><au>Harrison, John</au><au>Hirsch, Edward A.</au><au>Grigoriev, Dima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Resolution Proofs for Conjoining BDDs</atitle><jtitle>Computer Science – Theory and Applications</jtitle><date>2006</date><risdate>2006</risdate><spage>600</spage><epage>611</epage><pages>600-611</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540341668</isbn><isbn>9783540341666</isbn><eisbn>9783540341680</eisbn><eisbn>3540341684</eisbn><abstract>We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11753728_60</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Science – Theory and Applications, 2006, p.600-611
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11753728_60
source Springer Books
subjects Binary Decision Diagram
Cache Line
Conjunctive Normal Form
Empty Clause
Trace Format
title Extended Resolution Proofs for Conjoining BDDs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Resolution%20Proofs%20for%20Conjoining%20BDDs&rft.jtitle=Computer%20Science%20%E2%80%93%20Theory%20and%20Applications&rft.au=Sinz,%20Carsten&rft.date=2006&rft.spage=600&rft.epage=611&rft.pages=600-611&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540341668&rft.isbn_list=9783540341666&rft_id=info:doi/10.1007/11753728_60&rft_dat=%3Cspringer%3Espringer_books_10_1007_11753728_60%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540341680&rft.eisbn_list=3540341684&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true