Extended Resolution Proofs for Conjoining BDDs
We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, bas...
Gespeichert in:
Veröffentlicht in: | Computer Science – Theory and Applications 2006, p.600-611 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 611 |
---|---|
container_issue | |
container_start_page | 600 |
container_title | Computer Science – Theory and Applications |
container_volume | |
creator | Sinz, Carsten Biere, Armin |
description | We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution. |
doi_str_mv | 10.1007/11753728_60 |
format | Article |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11753728_60</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11753728_60</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-cf5045042b9d98ad6112b6c23cdbfa2402758fa9bdf94dd22fd9741a3987c7113</originalsourceid><addsrcrecordid>eNpNkEtLxEAQhNsXuK45-Qdy9ZC1e3oyj6Nm1wcsKKLnkMlkJLpkJBPBn29EBaGgDgVVHwVwRrgiRH1BpEvWwtQK9yCz2nApkSUpg_uwIEVUMEt7ACd_gTKHsEBGUVgt-RiylHqHSNZqxWoBq83n1A2-8_ljl-LuY-rjkD-MMYaUhzjmVRxeYz_0w0t-tV6nUzgKzS512a8v4fl681TdFtv7m7vqclskMnYq2lCinCWc9dY0fgYTTrWCW-9CIyQKXZrQWOeDld4LEfyMRw1bo1tNxEs4_-lN7-O83Y21i_Et1YT19xH1vyP4C0s-SbU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extended Resolution Proofs for Conjoining BDDs</title><source>Springer Books</source><creator>Sinz, Carsten ; Biere, Armin</creator><contributor>Harrison, John ; Hirsch, Edward A. ; Grigoriev, Dima</contributor><creatorcontrib>Sinz, Carsten ; Biere, Armin ; Harrison, John ; Hirsch, Edward A. ; Grigoriev, Dima</creatorcontrib><description>We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540341668</identifier><identifier>ISBN: 9783540341666</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540341680</identifier><identifier>EISBN: 3540341684</identifier><identifier>DOI: 10.1007/11753728_60</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Binary Decision Diagram ; Cache Line ; Conjunctive Normal Form ; Empty Clause ; Trace Format</subject><ispartof>Computer Science – Theory and Applications, 2006, p.600-611</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11753728_60$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11753728_60$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27924,38254,41441,42510</link.rule.ids></links><search><contributor>Harrison, John</contributor><contributor>Hirsch, Edward A.</contributor><contributor>Grigoriev, Dima</contributor><creatorcontrib>Sinz, Carsten</creatorcontrib><creatorcontrib>Biere, Armin</creatorcontrib><title>Extended Resolution Proofs for Conjoining BDDs</title><title>Computer Science – Theory and Applications</title><description>We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution.</description><subject>Binary Decision Diagram</subject><subject>Cache Line</subject><subject>Conjunctive Normal Form</subject><subject>Empty Clause</subject><subject>Trace Format</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540341668</isbn><isbn>9783540341666</isbn><isbn>9783540341680</isbn><isbn>3540341684</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkEtLxEAQhNsXuK45-Qdy9ZC1e3oyj6Nm1wcsKKLnkMlkJLpkJBPBn29EBaGgDgVVHwVwRrgiRH1BpEvWwtQK9yCz2nApkSUpg_uwIEVUMEt7ACd_gTKHsEBGUVgt-RiylHqHSNZqxWoBq83n1A2-8_ljl-LuY-rjkD-MMYaUhzjmVRxeYz_0w0t-tV6nUzgKzS512a8v4fl681TdFtv7m7vqclskMnYq2lCinCWc9dY0fgYTTrWCW-9CIyQKXZrQWOeDld4LEfyMRw1bo1tNxEs4_-lN7-O83Y21i_Et1YT19xH1vyP4C0s-SbU</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Sinz, Carsten</creator><creator>Biere, Armin</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>Extended Resolution Proofs for Conjoining BDDs</title><author>Sinz, Carsten ; Biere, Armin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-cf5045042b9d98ad6112b6c23cdbfa2402758fa9bdf94dd22fd9741a3987c7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Binary Decision Diagram</topic><topic>Cache Line</topic><topic>Conjunctive Normal Form</topic><topic>Empty Clause</topic><topic>Trace Format</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinz, Carsten</creatorcontrib><creatorcontrib>Biere, Armin</creatorcontrib><jtitle>Computer Science – Theory and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinz, Carsten</au><au>Biere, Armin</au><au>Harrison, John</au><au>Hirsch, Edward A.</au><au>Grigoriev, Dima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Resolution Proofs for Conjoining BDDs</atitle><jtitle>Computer Science – Theory and Applications</jtitle><date>2006</date><risdate>2006</risdate><spage>600</spage><epage>611</epage><pages>600-611</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540341668</isbn><isbn>9783540341666</isbn><eisbn>9783540341680</eisbn><eisbn>3540341684</eisbn><abstract>We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11753728_60</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computer Science – Theory and Applications, 2006, p.600-611 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_11753728_60 |
source | Springer Books |
subjects | Binary Decision Diagram Cache Line Conjunctive Normal Form Empty Clause Trace Format |
title | Extended Resolution Proofs for Conjoining BDDs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Resolution%20Proofs%20for%20Conjoining%20BDDs&rft.jtitle=Computer%20Science%20%E2%80%93%20Theory%20and%20Applications&rft.au=Sinz,%20Carsten&rft.date=2006&rft.spage=600&rft.epage=611&rft.pages=600-611&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540341668&rft.isbn_list=9783540341666&rft_id=info:doi/10.1007/11753728_60&rft_dat=%3Cspringer%3Espringer_books_10_1007_11753728_60%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540341680&rft.eisbn_list=3540341684&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |