Optimal Flow Distribution Among Multiple Channels with Unknown Capacities

Consider a simple network flow problem in which a flow of value D must be split among n channels directed from a source to a sink. The initially unknown channel capacities can be probed by attempting to send a flow of at most D units through the network. If the flow is not feasible, we are told on w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karp, Richard, Nierhoff, Till, Tantau, Till
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue
container_start_page 111
container_title
container_volume
creator Karp, Richard
Nierhoff, Till
Tantau, Till
description Consider a simple network flow problem in which a flow of value D must be split among n channels directed from a source to a sink. The initially unknown channel capacities can be probed by attempting to send a flow of at most D units through the network. If the flow is not feasible, we are told on which channels the capacity was exceeded (binary feedback) and possibly also how many units of flow were successfully sent on these channels (throughput feedback). For throughput feedback we present optimal protocols for minimizing the number of rounds needed to find a feasible flow and for minimizing the total amount of wasted flow. For binary feedback we present an asymptotically optimal protocol.
doi_str_mv 10.1007/11685654_4
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11685654_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11685654_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-s188t-c76fb9aa3b9228c8429f96d31da96c5643ae9ee917586208823815345c33642b3</originalsourceid><addsrcrecordid>eNpFkL1OwzAYRc2fRCldeAKPLAF__vw7VoFCpaIudI6c1G1NUyeqXeX1AQHiLHc40h0OIXfAHoAx_QigjFRSVOKMTKw2KAVDbgywczICBVAgCntBbv4E05dkxJDxwmqB12SS0gf7AjlDpUdkvuxzOLiWztpuoE8h5WOoTzl0kU4PXdzSt1ObQ996Wu5cjL5NdAh5R1dxH7sh0tL1rgk5-HRLrjauTX7yu2Oymj2_l6_FYvkyL6eLIoExuWi02tTWOawt56YxgtuNVWuEtbOqkUqg89Z7C1oaxZkxHA1IFLJBVILXOCb3P7-pP4a49ceq7rp9qoBV34mq_0T4CXUjUpA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Optimal Flow Distribution Among Multiple Channels with Unknown Capacities</title><source>Springer Books</source><creator>Karp, Richard ; Nierhoff, Till ; Tantau, Till</creator><contributor>Goldreich, Oded ; Selman, Alan L. ; Rosenberg, Arnold L.</contributor><creatorcontrib>Karp, Richard ; Nierhoff, Till ; Tantau, Till ; Goldreich, Oded ; Selman, Alan L. ; Rosenberg, Arnold L.</creatorcontrib><description>Consider a simple network flow problem in which a flow of value D must be split among n channels directed from a source to a sink. The initially unknown channel capacities can be probed by attempting to send a flow of at most D units through the network. If the flow is not feasible, we are told on which channels the capacity was exceeded (binary feedback) and possibly also how many units of flow were successfully sent on these channels (throughput feedback). For throughput feedback we present optimal protocols for minimizing the number of rounds needed to find a feasible flow and for minimizing the total amount of wasted flow. For binary feedback we present an asymptotically optimal protocol.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540328807</identifier><identifier>ISBN: 9783540328803</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540328810</identifier><identifier>EISBN: 3540328815</identifier><identifier>DOI: 10.1007/11685654_4</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Capacity Vector ; Congestion Control ; Multiple Channel ; Optimal Protocol ; Proportional Allocation</subject><ispartof>Theoretical Computer Science, 2006, p.111-128</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11685654_4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11685654_4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><contributor>Goldreich, Oded</contributor><contributor>Selman, Alan L.</contributor><contributor>Rosenberg, Arnold L.</contributor><creatorcontrib>Karp, Richard</creatorcontrib><creatorcontrib>Nierhoff, Till</creatorcontrib><creatorcontrib>Tantau, Till</creatorcontrib><title>Optimal Flow Distribution Among Multiple Channels with Unknown Capacities</title><title>Theoretical Computer Science</title><description>Consider a simple network flow problem in which a flow of value D must be split among n channels directed from a source to a sink. The initially unknown channel capacities can be probed by attempting to send a flow of at most D units through the network. If the flow is not feasible, we are told on which channels the capacity was exceeded (binary feedback) and possibly also how many units of flow were successfully sent on these channels (throughput feedback). For throughput feedback we present optimal protocols for minimizing the number of rounds needed to find a feasible flow and for minimizing the total amount of wasted flow. For binary feedback we present an asymptotically optimal protocol.</description><subject>Capacity Vector</subject><subject>Congestion Control</subject><subject>Multiple Channel</subject><subject>Optimal Protocol</subject><subject>Proportional Allocation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540328807</isbn><isbn>9783540328803</isbn><isbn>9783540328810</isbn><isbn>3540328815</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkL1OwzAYRc2fRCldeAKPLAF__vw7VoFCpaIudI6c1G1NUyeqXeX1AQHiLHc40h0OIXfAHoAx_QigjFRSVOKMTKw2KAVDbgywczICBVAgCntBbv4E05dkxJDxwmqB12SS0gf7AjlDpUdkvuxzOLiWztpuoE8h5WOoTzl0kU4PXdzSt1ObQ996Wu5cjL5NdAh5R1dxH7sh0tL1rgk5-HRLrjauTX7yu2Oymj2_l6_FYvkyL6eLIoExuWi02tTWOawt56YxgtuNVWuEtbOqkUqg89Z7C1oaxZkxHA1IFLJBVILXOCb3P7-pP4a49ceq7rp9qoBV34mq_0T4CXUjUpA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Karp, Richard</creator><creator>Nierhoff, Till</creator><creator>Tantau, Till</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>Optimal Flow Distribution Among Multiple Channels with Unknown Capacities</title><author>Karp, Richard ; Nierhoff, Till ; Tantau, Till</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s188t-c76fb9aa3b9228c8429f96d31da96c5643ae9ee917586208823815345c33642b3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Capacity Vector</topic><topic>Congestion Control</topic><topic>Multiple Channel</topic><topic>Optimal Protocol</topic><topic>Proportional Allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karp, Richard</creatorcontrib><creatorcontrib>Nierhoff, Till</creatorcontrib><creatorcontrib>Tantau, Till</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karp, Richard</au><au>Nierhoff, Till</au><au>Tantau, Till</au><au>Goldreich, Oded</au><au>Selman, Alan L.</au><au>Rosenberg, Arnold L.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Optimal Flow Distribution Among Multiple Channels with Unknown Capacities</atitle><btitle>Theoretical Computer Science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>111</spage><epage>128</epage><pages>111-128</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540328807</isbn><isbn>9783540328803</isbn><eisbn>9783540328810</eisbn><eisbn>3540328815</eisbn><abstract>Consider a simple network flow problem in which a flow of value D must be split among n channels directed from a source to a sink. The initially unknown channel capacities can be probed by attempting to send a flow of at most D units through the network. If the flow is not feasible, we are told on which channels the capacity was exceeded (binary feedback) and possibly also how many units of flow were successfully sent on these channels (throughput feedback). For throughput feedback we present optimal protocols for minimizing the number of rounds needed to find a feasible flow and for minimizing the total amount of wasted flow. For binary feedback we present an asymptotically optimal protocol.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11685654_4</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Theoretical Computer Science, 2006, p.111-128
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11685654_4
source Springer Books
subjects Capacity Vector
Congestion Control
Multiple Channel
Optimal Protocol
Proportional Allocation
title Optimal Flow Distribution Among Multiple Channels with Unknown Capacities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Optimal%20Flow%20Distribution%20Among%20Multiple%20Channels%20with%20Unknown%20Capacities&rft.btitle=Theoretical%20Computer%20Science&rft.au=Karp,%20Richard&rft.date=2006&rft.spage=111&rft.epage=128&rft.pages=111-128&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540328807&rft.isbn_list=9783540328803&rft_id=info:doi/10.1007/11685654_4&rft_dat=%3Cspringer%3Espringer_books_10_1007_11685654_4%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540328810&rft.eisbn_list=3540328815&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true