Optimal Flow Distribution Among Multiple Channels with Unknown Capacities
Consider a simple network flow problem in which a flow of value D must be split among n channels directed from a source to a sink. The initially unknown channel capacities can be probed by attempting to send a flow of at most D units through the network. If the flow is not feasible, we are told on w...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | |
container_start_page | 111 |
container_title | |
container_volume | |
creator | Karp, Richard Nierhoff, Till Tantau, Till |
description | Consider a simple network flow problem in which a flow of value D must be split among n channels directed from a source to a sink. The initially unknown channel capacities can be probed by attempting to send a flow of at most D units through the network. If the flow is not feasible, we are told on which channels the capacity was exceeded (binary feedback) and possibly also how many units of flow were successfully sent on these channels (throughput feedback). For throughput feedback we present optimal protocols for minimizing the number of rounds needed to find a feasible flow and for minimizing the total amount of wasted flow. For binary feedback we present an asymptotically optimal protocol. |
doi_str_mv | 10.1007/11685654_4 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11685654_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11685654_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-s188t-c76fb9aa3b9228c8429f96d31da96c5643ae9ee917586208823815345c33642b3</originalsourceid><addsrcrecordid>eNpFkL1OwzAYRc2fRCldeAKPLAF__vw7VoFCpaIudI6c1G1NUyeqXeX1AQHiLHc40h0OIXfAHoAx_QigjFRSVOKMTKw2KAVDbgywczICBVAgCntBbv4E05dkxJDxwmqB12SS0gf7AjlDpUdkvuxzOLiWztpuoE8h5WOoTzl0kU4PXdzSt1ObQ996Wu5cjL5NdAh5R1dxH7sh0tL1rgk5-HRLrjauTX7yu2Oymj2_l6_FYvkyL6eLIoExuWi02tTWOawt56YxgtuNVWuEtbOqkUqg89Z7C1oaxZkxHA1IFLJBVILXOCb3P7-pP4a49ceq7rp9qoBV34mq_0T4CXUjUpA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Optimal Flow Distribution Among Multiple Channels with Unknown Capacities</title><source>Springer Books</source><creator>Karp, Richard ; Nierhoff, Till ; Tantau, Till</creator><contributor>Goldreich, Oded ; Selman, Alan L. ; Rosenberg, Arnold L.</contributor><creatorcontrib>Karp, Richard ; Nierhoff, Till ; Tantau, Till ; Goldreich, Oded ; Selman, Alan L. ; Rosenberg, Arnold L.</creatorcontrib><description>Consider a simple network flow problem in which a flow of value D must be split among n channels directed from a source to a sink. The initially unknown channel capacities can be probed by attempting to send a flow of at most D units through the network. If the flow is not feasible, we are told on which channels the capacity was exceeded (binary feedback) and possibly also how many units of flow were successfully sent on these channels (throughput feedback). For throughput feedback we present optimal protocols for minimizing the number of rounds needed to find a feasible flow and for minimizing the total amount of wasted flow. For binary feedback we present an asymptotically optimal protocol.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540328807</identifier><identifier>ISBN: 9783540328803</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540328810</identifier><identifier>EISBN: 3540328815</identifier><identifier>DOI: 10.1007/11685654_4</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Capacity Vector ; Congestion Control ; Multiple Channel ; Optimal Protocol ; Proportional Allocation</subject><ispartof>Theoretical Computer Science, 2006, p.111-128</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11685654_4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11685654_4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><contributor>Goldreich, Oded</contributor><contributor>Selman, Alan L.</contributor><contributor>Rosenberg, Arnold L.</contributor><creatorcontrib>Karp, Richard</creatorcontrib><creatorcontrib>Nierhoff, Till</creatorcontrib><creatorcontrib>Tantau, Till</creatorcontrib><title>Optimal Flow Distribution Among Multiple Channels with Unknown Capacities</title><title>Theoretical Computer Science</title><description>Consider a simple network flow problem in which a flow of value D must be split among n channels directed from a source to a sink. The initially unknown channel capacities can be probed by attempting to send a flow of at most D units through the network. If the flow is not feasible, we are told on which channels the capacity was exceeded (binary feedback) and possibly also how many units of flow were successfully sent on these channels (throughput feedback). For throughput feedback we present optimal protocols for minimizing the number of rounds needed to find a feasible flow and for minimizing the total amount of wasted flow. For binary feedback we present an asymptotically optimal protocol.</description><subject>Capacity Vector</subject><subject>Congestion Control</subject><subject>Multiple Channel</subject><subject>Optimal Protocol</subject><subject>Proportional Allocation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540328807</isbn><isbn>9783540328803</isbn><isbn>9783540328810</isbn><isbn>3540328815</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkL1OwzAYRc2fRCldeAKPLAF__vw7VoFCpaIudI6c1G1NUyeqXeX1AQHiLHc40h0OIXfAHoAx_QigjFRSVOKMTKw2KAVDbgywczICBVAgCntBbv4E05dkxJDxwmqB12SS0gf7AjlDpUdkvuxzOLiWztpuoE8h5WOoTzl0kU4PXdzSt1ObQ996Wu5cjL5NdAh5R1dxH7sh0tL1rgk5-HRLrjauTX7yu2Oymj2_l6_FYvkyL6eLIoExuWi02tTWOawt56YxgtuNVWuEtbOqkUqg89Z7C1oaxZkxHA1IFLJBVILXOCb3P7-pP4a49ceq7rp9qoBV34mq_0T4CXUjUpA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Karp, Richard</creator><creator>Nierhoff, Till</creator><creator>Tantau, Till</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>Optimal Flow Distribution Among Multiple Channels with Unknown Capacities</title><author>Karp, Richard ; Nierhoff, Till ; Tantau, Till</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s188t-c76fb9aa3b9228c8429f96d31da96c5643ae9ee917586208823815345c33642b3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Capacity Vector</topic><topic>Congestion Control</topic><topic>Multiple Channel</topic><topic>Optimal Protocol</topic><topic>Proportional Allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karp, Richard</creatorcontrib><creatorcontrib>Nierhoff, Till</creatorcontrib><creatorcontrib>Tantau, Till</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karp, Richard</au><au>Nierhoff, Till</au><au>Tantau, Till</au><au>Goldreich, Oded</au><au>Selman, Alan L.</au><au>Rosenberg, Arnold L.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Optimal Flow Distribution Among Multiple Channels with Unknown Capacities</atitle><btitle>Theoretical Computer Science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>111</spage><epage>128</epage><pages>111-128</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540328807</isbn><isbn>9783540328803</isbn><eisbn>9783540328810</eisbn><eisbn>3540328815</eisbn><abstract>Consider a simple network flow problem in which a flow of value D must be split among n channels directed from a source to a sink. The initially unknown channel capacities can be probed by attempting to send a flow of at most D units through the network. If the flow is not feasible, we are told on which channels the capacity was exceeded (binary feedback) and possibly also how many units of flow were successfully sent on these channels (throughput feedback). For throughput feedback we present optimal protocols for minimizing the number of rounds needed to find a feasible flow and for minimizing the total amount of wasted flow. For binary feedback we present an asymptotically optimal protocol.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11685654_4</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Theoretical Computer Science, 2006, p.111-128 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_11685654_4 |
source | Springer Books |
subjects | Capacity Vector Congestion Control Multiple Channel Optimal Protocol Proportional Allocation |
title | Optimal Flow Distribution Among Multiple Channels with Unknown Capacities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Optimal%20Flow%20Distribution%20Among%20Multiple%20Channels%20with%20Unknown%20Capacities&rft.btitle=Theoretical%20Computer%20Science&rft.au=Karp,%20Richard&rft.date=2006&rft.spage=111&rft.epage=128&rft.pages=111-128&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540328807&rft.isbn_list=9783540328803&rft_id=info:doi/10.1007/11685654_4&rft_dat=%3Cspringer%3Espringer_books_10_1007_11685654_4%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540328810&rft.eisbn_list=3540328815&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |