Spotting Multilingual Consonant-Vowel Units of Speech Using Neural Network Models

Multilingual speech recognition system is required for tasks that use several languages in one speech recognition application. In this paper, we propose an approach for multilingual speech recognition by spotting consonant-vowel (CV) units. The important features of spotting approach are that there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gangashetty, Suryakanth V., Sekhar, C. Chandra, Yegnanarayana, B.
Format: Buchkapitel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue
container_start_page 303
container_title
container_volume
creator Gangashetty, Suryakanth V.
Sekhar, C. Chandra
Yegnanarayana, B.
description Multilingual speech recognition system is required for tasks that use several languages in one speech recognition application. In this paper, we propose an approach for multilingual speech recognition by spotting consonant-vowel (CV) units. The important features of spotting approach are that there is no need for automatic segmentation of speech and it is not necessary to use models for higher level units to recognise the CV units. The main issues in spotting multilingual CV units are the location of anchor points and labeling the regions around these anchor points using suitable classifiers. The vowel onset points (VOPs) have been used as anchor points. The distribution capturing ability of autoassociative neural network (AANN) models is explored for detection of VOPs in continuous speech. We explore classification models such as support vector machines (SVMs) which are capable of discriminating confusable classes of CV units and generalisation from limited amount of training data. The data for similar CV units across languages are shared to train the classifiers for recognition of CV units of speech in multiple languages. We study the spotting approach for recognition of a large number of CV units in the broadcast news corpus of three Indian languages.
doi_str_mv 10.1007/11613107_27
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11613107_27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11613107_27</sourcerecordid><originalsourceid>FETCH-LOGICAL-j1007-1257cbae3f7493b33b0a12a95bbef684c65a97094a6c200d00f1e52f2df365593</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhsOXxBg78Qdy5VBw4qZZjqhigLQNoVGuVdom0C1qqqbV_j6t2AFfbOm1_T42IXcMHhiAfGQsYchA5lyekRsUMSAXy0Sek9mosAgxVhcngXEh1SWZAQKPlIzxmixC2MMYyBQHmJGPXev7vm6-6WZwfe3GatCOpr4JvtFNH335o3E0a-o-UG_prjWm_KFZmEa2ZujG5q3pj7470I2vjAu35MpqF8zilOckWz1_pq_R-v3lLX1aR_vpjmhiKwtt0MpYYYFYgGZcK1EUxibLuEyEVhJUrJNyJK0ALDOCW15ZTIRQOCf3f3tD240wpssL7w8hZ5BPBvm_R-EvUp5VhQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Spotting Multilingual Consonant-Vowel Units of Speech Using Neural Network Models</title><source>Springer Books</source><creator>Gangashetty, Suryakanth V. ; Sekhar, C. Chandra ; Yegnanarayana, B.</creator><contributor>Faundez-Zanuy, Marcos ; Espinosa-Duro, Virginia ; Esposito, Anna ; Janer, Léonard ; Satue-Villar, Antonio ; Roure, Josep</contributor><creatorcontrib>Gangashetty, Suryakanth V. ; Sekhar, C. Chandra ; Yegnanarayana, B. ; Faundez-Zanuy, Marcos ; Espinosa-Duro, Virginia ; Esposito, Anna ; Janer, Léonard ; Satue-Villar, Antonio ; Roure, Josep</creatorcontrib><description>Multilingual speech recognition system is required for tasks that use several languages in one speech recognition application. In this paper, we propose an approach for multilingual speech recognition by spotting consonant-vowel (CV) units. The important features of spotting approach are that there is no need for automatic segmentation of speech and it is not necessary to use models for higher level units to recognise the CV units. The main issues in spotting multilingual CV units are the location of anchor points and labeling the regions around these anchor points using suitable classifiers. The vowel onset points (VOPs) have been used as anchor points. The distribution capturing ability of autoassociative neural network (AANN) models is explored for detection of VOPs in continuous speech. We explore classification models such as support vector machines (SVMs) which are capable of discriminating confusable classes of CV units and generalisation from limited amount of training data. The data for similar CV units across languages are shared to train the classifiers for recognition of CV units of speech in multiple languages. We study the spotting approach for recognition of a large number of CV units in the broadcast news corpus of three Indian languages.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540312579</identifier><identifier>ISBN: 9783540312574</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540325867</identifier><identifier>EISBN: 9783540325864</identifier><identifier>DOI: 10.1007/11613107_27</identifier><language>eng ; jpn</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Continuous Speech ; Indian Language ; Speech Recognition ; Support Vector Machine ; Support Vector Machine Model</subject><ispartof>Nonlinear Analyses and Algorithms for Speech Processing, 2006, p.303-317</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11613107_27$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11613107_27$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Faundez-Zanuy, Marcos</contributor><contributor>Espinosa-Duro, Virginia</contributor><contributor>Esposito, Anna</contributor><contributor>Janer, Léonard</contributor><contributor>Satue-Villar, Antonio</contributor><contributor>Roure, Josep</contributor><creatorcontrib>Gangashetty, Suryakanth V.</creatorcontrib><creatorcontrib>Sekhar, C. Chandra</creatorcontrib><creatorcontrib>Yegnanarayana, B.</creatorcontrib><title>Spotting Multilingual Consonant-Vowel Units of Speech Using Neural Network Models</title><title>Nonlinear Analyses and Algorithms for Speech Processing</title><description>Multilingual speech recognition system is required for tasks that use several languages in one speech recognition application. In this paper, we propose an approach for multilingual speech recognition by spotting consonant-vowel (CV) units. The important features of spotting approach are that there is no need for automatic segmentation of speech and it is not necessary to use models for higher level units to recognise the CV units. The main issues in spotting multilingual CV units are the location of anchor points and labeling the regions around these anchor points using suitable classifiers. The vowel onset points (VOPs) have been used as anchor points. The distribution capturing ability of autoassociative neural network (AANN) models is explored for detection of VOPs in continuous speech. We explore classification models such as support vector machines (SVMs) which are capable of discriminating confusable classes of CV units and generalisation from limited amount of training data. The data for similar CV units across languages are shared to train the classifiers for recognition of CV units of speech in multiple languages. We study the spotting approach for recognition of a large number of CV units in the broadcast news corpus of three Indian languages.</description><subject>Continuous Speech</subject><subject>Indian Language</subject><subject>Speech Recognition</subject><subject>Support Vector Machine</subject><subject>Support Vector Machine Model</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540312579</isbn><isbn>9783540312574</isbn><isbn>3540325867</isbn><isbn>9783540325864</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNkE1PwzAMhsOXxBg78Qdy5VBw4qZZjqhigLQNoVGuVdom0C1qqqbV_j6t2AFfbOm1_T42IXcMHhiAfGQsYchA5lyekRsUMSAXy0Sek9mosAgxVhcngXEh1SWZAQKPlIzxmixC2MMYyBQHmJGPXev7vm6-6WZwfe3GatCOpr4JvtFNH335o3E0a-o-UG_prjWm_KFZmEa2ZujG5q3pj7470I2vjAu35MpqF8zilOckWz1_pq_R-v3lLX1aR_vpjmhiKwtt0MpYYYFYgGZcK1EUxibLuEyEVhJUrJNyJK0ALDOCW15ZTIRQOCf3f3tD240wpssL7w8hZ5BPBvm_R-EvUp5VhQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Gangashetty, Suryakanth V.</creator><creator>Sekhar, C. Chandra</creator><creator>Yegnanarayana, B.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>Spotting Multilingual Consonant-Vowel Units of Speech Using Neural Network Models</title><author>Gangashetty, Suryakanth V. ; Sekhar, C. Chandra ; Yegnanarayana, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j1007-1257cbae3f7493b33b0a12a95bbef684c65a97094a6c200d00f1e52f2df365593</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng ; jpn</language><creationdate>2006</creationdate><topic>Continuous Speech</topic><topic>Indian Language</topic><topic>Speech Recognition</topic><topic>Support Vector Machine</topic><topic>Support Vector Machine Model</topic><toplevel>online_resources</toplevel><creatorcontrib>Gangashetty, Suryakanth V.</creatorcontrib><creatorcontrib>Sekhar, C. Chandra</creatorcontrib><creatorcontrib>Yegnanarayana, B.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gangashetty, Suryakanth V.</au><au>Sekhar, C. Chandra</au><au>Yegnanarayana, B.</au><au>Faundez-Zanuy, Marcos</au><au>Espinosa-Duro, Virginia</au><au>Esposito, Anna</au><au>Janer, Léonard</au><au>Satue-Villar, Antonio</au><au>Roure, Josep</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Spotting Multilingual Consonant-Vowel Units of Speech Using Neural Network Models</atitle><btitle>Nonlinear Analyses and Algorithms for Speech Processing</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>303</spage><epage>317</epage><pages>303-317</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540312579</isbn><isbn>9783540312574</isbn><eisbn>3540325867</eisbn><eisbn>9783540325864</eisbn><abstract>Multilingual speech recognition system is required for tasks that use several languages in one speech recognition application. In this paper, we propose an approach for multilingual speech recognition by spotting consonant-vowel (CV) units. The important features of spotting approach are that there is no need for automatic segmentation of speech and it is not necessary to use models for higher level units to recognise the CV units. The main issues in spotting multilingual CV units are the location of anchor points and labeling the regions around these anchor points using suitable classifiers. The vowel onset points (VOPs) have been used as anchor points. The distribution capturing ability of autoassociative neural network (AANN) models is explored for detection of VOPs in continuous speech. We explore classification models such as support vector machines (SVMs) which are capable of discriminating confusable classes of CV units and generalisation from limited amount of training data. The data for similar CV units across languages are shared to train the classifiers for recognition of CV units of speech in multiple languages. We study the spotting approach for recognition of a large number of CV units in the broadcast news corpus of three Indian languages.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11613107_27</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Nonlinear Analyses and Algorithms for Speech Processing, 2006, p.303-317
issn 0302-9743
1611-3349
language eng ; jpn
recordid cdi_springer_books_10_1007_11613107_27
source Springer Books
subjects Continuous Speech
Indian Language
Speech Recognition
Support Vector Machine
Support Vector Machine Model
title Spotting Multilingual Consonant-Vowel Units of Speech Using Neural Network Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Spotting%20Multilingual%20Consonant-Vowel%20Units%20of%20Speech%20Using%20Neural%20Network%20Models&rft.btitle=Nonlinear%20Analyses%20and%20Algorithms%20for%20Speech%20Processing&rft.au=Gangashetty,%20Suryakanth%20V.&rft.date=2006&rft.spage=303&rft.epage=317&rft.pages=303-317&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540312579&rft.isbn_list=9783540312574&rft_id=info:doi/10.1007/11613107_27&rft_dat=%3Cspringer%3Espringer_books_10_1007_11613107_27%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540325867&rft.eisbn_list=9783540325864&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true