Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data

Human liver cell bioreactors are used in extracorporeal liver support therapy. To optimize bioreactor operation with respect to clinical application an early prediction of the long-term bioreactor culture performance is of interest. Data from 70 liver cell bioreactor runs labeled by low (n=18), medi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schmidt-Heck, Wolfgang, Zeilinger, Katrin, Pless, Gesine, Gerlach, Joerg C., Pfaff, Michael, Guthke, Reinhard
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue
container_start_page 109
container_title
container_volume
creator Schmidt-Heck, Wolfgang
Zeilinger, Katrin
Pless, Gesine
Gerlach, Joerg C.
Pfaff, Michael
Guthke, Reinhard
description Human liver cell bioreactors are used in extracorporeal liver support therapy. To optimize bioreactor operation with respect to clinical application an early prediction of the long-term bioreactor culture performance is of interest. Data from 70 liver cell bioreactor runs labeled by low (n=18), medium (n=34) and high (n=18) performance were analyzed by statistical and machine learning methods. 25 variables characterizing donor organ properties, organ preservation, cell isolation and cell inoculation prior to bioreactor operation were analyzed with respect to their importance to bioreactor performance prediction. Results obtained were compared and assessed with respect to their robustness. The inoculated volume of liver cells was found to be the most relevant variable allowing the prediction of low versus medium/high bioreactor performance with an accuracy of 84 %.
doi_str_mv 10.1007/11573067_12
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11573067_12</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11573067_12</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-305e303f6747b5927bf38e729d1c03ff5f5312f19573c04a46540e67636bcc203</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1Loi098Qd85RDY9foRH6EFilSpRYJzlLh2CZQY2QGJf08qOHDa1cxotd8wdo5wiQDmClEZAm0qFAdsTEoCoValOGQj1IgFkbRHbGpNufeE1UbKYzYCAlFYI-mUjXN-BQBhrBixx3Xym9b1bex4DLx_8XztU4jpve6c30uLz2Hly_bLJz7zux2_aWPytetjyrz55vPYxcRXaTuk5nVfn7GTUO-yn_7NCXu-u32aLYrl6v5hdr0sMpa2LwiUJ6Aw_GcaZYVpApXeCLtBN8hBBUUoAtoB14GspR5wvDaadOOcAJqwi9-7-SO13danqonxLVcI1b6o6l9R9ANx7lP-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data</title><source>Springer Books</source><creator>Schmidt-Heck, Wolfgang ; Zeilinger, Katrin ; Pless, Gesine ; Gerlach, Joerg C. ; Pfaff, Michael ; Guthke, Reinhard</creator><contributor>Martín-Sánchez, Fernando ; Pereira, António Sousa ; Oliveira, José Luís ; Maojo, Víctor</contributor><creatorcontrib>Schmidt-Heck, Wolfgang ; Zeilinger, Katrin ; Pless, Gesine ; Gerlach, Joerg C. ; Pfaff, Michael ; Guthke, Reinhard ; Martín-Sánchez, Fernando ; Pereira, António Sousa ; Oliveira, José Luís ; Maojo, Víctor</creatorcontrib><description>Human liver cell bioreactors are used in extracorporeal liver support therapy. To optimize bioreactor operation with respect to clinical application an early prediction of the long-term bioreactor culture performance is of interest. Data from 70 liver cell bioreactor runs labeled by low (n=18), medium (n=34) and high (n=18) performance were analyzed by statistical and machine learning methods. 25 variables characterizing donor organ properties, organ preservation, cell isolation and cell inoculation prior to bioreactor operation were analyzed with respect to their importance to bioreactor performance prediction. Results obtained were compared and assessed with respect to their robustness. The inoculated volume of liver cells was found to be the most relevant variable allowing the prediction of low versus medium/high bioreactor performance with an accuracy of 84 %.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540296744</identifier><identifier>ISBN: 3540296743</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316582</identifier><identifier>EISBN: 9783540316589</identifier><identifier>DOI: 10.1007/11573067_12</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bioreactor Culture ; Donor Organ ; Independent Component Analysis ; Leaf Node ; Support Vector Machine</subject><ispartof>Biological and Medical Data Analysis, 2005, p.109-119</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11573067_12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11573067_12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27904,38234,41421,42490</link.rule.ids></links><search><contributor>Martín-Sánchez, Fernando</contributor><contributor>Pereira, António Sousa</contributor><contributor>Oliveira, José Luís</contributor><contributor>Maojo, Víctor</contributor><creatorcontrib>Schmidt-Heck, Wolfgang</creatorcontrib><creatorcontrib>Zeilinger, Katrin</creatorcontrib><creatorcontrib>Pless, Gesine</creatorcontrib><creatorcontrib>Gerlach, Joerg C.</creatorcontrib><creatorcontrib>Pfaff, Michael</creatorcontrib><creatorcontrib>Guthke, Reinhard</creatorcontrib><title>Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data</title><title>Biological and Medical Data Analysis</title><description>Human liver cell bioreactors are used in extracorporeal liver support therapy. To optimize bioreactor operation with respect to clinical application an early prediction of the long-term bioreactor culture performance is of interest. Data from 70 liver cell bioreactor runs labeled by low (n=18), medium (n=34) and high (n=18) performance were analyzed by statistical and machine learning methods. 25 variables characterizing donor organ properties, organ preservation, cell isolation and cell inoculation prior to bioreactor operation were analyzed with respect to their importance to bioreactor performance prediction. Results obtained were compared and assessed with respect to their robustness. The inoculated volume of liver cells was found to be the most relevant variable allowing the prediction of low versus medium/high bioreactor performance with an accuracy of 84 %.</description><subject>Bioreactor Culture</subject><subject>Donor Organ</subject><subject>Independent Component Analysis</subject><subject>Leaf Node</subject><subject>Support Vector Machine</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540296744</isbn><isbn>3540296743</isbn><isbn>3540316582</isbn><isbn>9783540316589</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNkEtPwzAQhM1Loi098Qd85RDY9foRH6EFilSpRYJzlLh2CZQY2QGJf08qOHDa1cxotd8wdo5wiQDmClEZAm0qFAdsTEoCoValOGQj1IgFkbRHbGpNufeE1UbKYzYCAlFYI-mUjXN-BQBhrBixx3Xym9b1bex4DLx_8XztU4jpve6c30uLz2Hly_bLJz7zux2_aWPytetjyrz55vPYxcRXaTuk5nVfn7GTUO-yn_7NCXu-u32aLYrl6v5hdr0sMpa2LwiUJ6Aw_GcaZYVpApXeCLtBN8hBBUUoAtoB14GspR5wvDaadOOcAJqwi9-7-SO13danqonxLVcI1b6o6l9R9ANx7lP-</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Schmidt-Heck, Wolfgang</creator><creator>Zeilinger, Katrin</creator><creator>Pless, Gesine</creator><creator>Gerlach, Joerg C.</creator><creator>Pfaff, Michael</creator><creator>Guthke, Reinhard</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2005</creationdate><title>Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data</title><author>Schmidt-Heck, Wolfgang ; Zeilinger, Katrin ; Pless, Gesine ; Gerlach, Joerg C. ; Pfaff, Michael ; Guthke, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-305e303f6747b5927bf38e729d1c03ff5f5312f19573c04a46540e67636bcc203</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bioreactor Culture</topic><topic>Donor Organ</topic><topic>Independent Component Analysis</topic><topic>Leaf Node</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt-Heck, Wolfgang</creatorcontrib><creatorcontrib>Zeilinger, Katrin</creatorcontrib><creatorcontrib>Pless, Gesine</creatorcontrib><creatorcontrib>Gerlach, Joerg C.</creatorcontrib><creatorcontrib>Pfaff, Michael</creatorcontrib><creatorcontrib>Guthke, Reinhard</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt-Heck, Wolfgang</au><au>Zeilinger, Katrin</au><au>Pless, Gesine</au><au>Gerlach, Joerg C.</au><au>Pfaff, Michael</au><au>Guthke, Reinhard</au><au>Martín-Sánchez, Fernando</au><au>Pereira, António Sousa</au><au>Oliveira, José Luís</au><au>Maojo, Víctor</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data</atitle><btitle>Biological and Medical Data Analysis</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>109</spage><epage>119</epage><pages>109-119</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540296744</isbn><isbn>3540296743</isbn><eisbn>3540316582</eisbn><eisbn>9783540316589</eisbn><abstract>Human liver cell bioreactors are used in extracorporeal liver support therapy. To optimize bioreactor operation with respect to clinical application an early prediction of the long-term bioreactor culture performance is of interest. Data from 70 liver cell bioreactor runs labeled by low (n=18), medium (n=34) and high (n=18) performance were analyzed by statistical and machine learning methods. 25 variables characterizing donor organ properties, organ preservation, cell isolation and cell inoculation prior to bioreactor operation were analyzed with respect to their importance to bioreactor performance prediction. Results obtained were compared and assessed with respect to their robustness. The inoculated volume of liver cells was found to be the most relevant variable allowing the prediction of low versus medium/high bioreactor performance with an accuracy of 84 %.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11573067_12</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Biological and Medical Data Analysis, 2005, p.109-119
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11573067_12
source Springer Books
subjects Bioreactor Culture
Donor Organ
Independent Component Analysis
Leaf Node
Support Vector Machine
title Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Prediction%20of%20the%20Performance%20of%20Human%20Liver%20Cell%20Bioreactors%20by%20Donor%20Organ%20Data&rft.btitle=Biological%20and%20Medical%20Data%20Analysis&rft.au=Schmidt-Heck,%20Wolfgang&rft.date=2005&rft.spage=109&rft.epage=119&rft.pages=109-119&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540296744&rft.isbn_list=3540296743&rft_id=info:doi/10.1007/11573067_12&rft_dat=%3Cspringer%3Espringer_books_10_1007_11573067_12%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316582&rft.eisbn_list=9783540316589&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true