Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data
Human liver cell bioreactors are used in extracorporeal liver support therapy. To optimize bioreactor operation with respect to clinical application an early prediction of the long-term bioreactor culture performance is of interest. Data from 70 liver cell bioreactor runs labeled by low (n=18), medi...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | |
container_start_page | 109 |
container_title | |
container_volume | |
creator | Schmidt-Heck, Wolfgang Zeilinger, Katrin Pless, Gesine Gerlach, Joerg C. Pfaff, Michael Guthke, Reinhard |
description | Human liver cell bioreactors are used in extracorporeal liver support therapy. To optimize bioreactor operation with respect to clinical application an early prediction of the long-term bioreactor culture performance is of interest. Data from 70 liver cell bioreactor runs labeled by low (n=18), medium (n=34) and high (n=18) performance were analyzed by statistical and machine learning methods. 25 variables characterizing donor organ properties, organ preservation, cell isolation and cell inoculation prior to bioreactor operation were analyzed with respect to their importance to bioreactor performance prediction. Results obtained were compared and assessed with respect to their robustness. The inoculated volume of liver cells was found to be the most relevant variable allowing the prediction of low versus medium/high bioreactor performance with an accuracy of 84 %. |
doi_str_mv | 10.1007/11573067_12 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11573067_12</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11573067_12</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-305e303f6747b5927bf38e729d1c03ff5f5312f19573c04a46540e67636bcc203</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1Loi098Qd85RDY9foRH6EFilSpRYJzlLh2CZQY2QGJf08qOHDa1cxotd8wdo5wiQDmClEZAm0qFAdsTEoCoValOGQj1IgFkbRHbGpNufeE1UbKYzYCAlFYI-mUjXN-BQBhrBixx3Xym9b1bex4DLx_8XztU4jpve6c30uLz2Hly_bLJz7zux2_aWPytetjyrz55vPYxcRXaTuk5nVfn7GTUO-yn_7NCXu-u32aLYrl6v5hdr0sMpa2LwiUJ6Aw_GcaZYVpApXeCLtBN8hBBUUoAtoB14GspR5wvDaadOOcAJqwi9-7-SO13danqonxLVcI1b6o6l9R9ANx7lP-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data</title><source>Springer Books</source><creator>Schmidt-Heck, Wolfgang ; Zeilinger, Katrin ; Pless, Gesine ; Gerlach, Joerg C. ; Pfaff, Michael ; Guthke, Reinhard</creator><contributor>Martín-Sánchez, Fernando ; Pereira, António Sousa ; Oliveira, José Luís ; Maojo, Víctor</contributor><creatorcontrib>Schmidt-Heck, Wolfgang ; Zeilinger, Katrin ; Pless, Gesine ; Gerlach, Joerg C. ; Pfaff, Michael ; Guthke, Reinhard ; Martín-Sánchez, Fernando ; Pereira, António Sousa ; Oliveira, José Luís ; Maojo, Víctor</creatorcontrib><description>Human liver cell bioreactors are used in extracorporeal liver support therapy. To optimize bioreactor operation with respect to clinical application an early prediction of the long-term bioreactor culture performance is of interest. Data from 70 liver cell bioreactor runs labeled by low (n=18), medium (n=34) and high (n=18) performance were analyzed by statistical and machine learning methods. 25 variables characterizing donor organ properties, organ preservation, cell isolation and cell inoculation prior to bioreactor operation were analyzed with respect to their importance to bioreactor performance prediction. Results obtained were compared and assessed with respect to their robustness. The inoculated volume of liver cells was found to be the most relevant variable allowing the prediction of low versus medium/high bioreactor performance with an accuracy of 84 %.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540296744</identifier><identifier>ISBN: 3540296743</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316582</identifier><identifier>EISBN: 9783540316589</identifier><identifier>DOI: 10.1007/11573067_12</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bioreactor Culture ; Donor Organ ; Independent Component Analysis ; Leaf Node ; Support Vector Machine</subject><ispartof>Biological and Medical Data Analysis, 2005, p.109-119</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11573067_12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11573067_12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27904,38234,41421,42490</link.rule.ids></links><search><contributor>Martín-Sánchez, Fernando</contributor><contributor>Pereira, António Sousa</contributor><contributor>Oliveira, José Luís</contributor><contributor>Maojo, Víctor</contributor><creatorcontrib>Schmidt-Heck, Wolfgang</creatorcontrib><creatorcontrib>Zeilinger, Katrin</creatorcontrib><creatorcontrib>Pless, Gesine</creatorcontrib><creatorcontrib>Gerlach, Joerg C.</creatorcontrib><creatorcontrib>Pfaff, Michael</creatorcontrib><creatorcontrib>Guthke, Reinhard</creatorcontrib><title>Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data</title><title>Biological and Medical Data Analysis</title><description>Human liver cell bioreactors are used in extracorporeal liver support therapy. To optimize bioreactor operation with respect to clinical application an early prediction of the long-term bioreactor culture performance is of interest. Data from 70 liver cell bioreactor runs labeled by low (n=18), medium (n=34) and high (n=18) performance were analyzed by statistical and machine learning methods. 25 variables characterizing donor organ properties, organ preservation, cell isolation and cell inoculation prior to bioreactor operation were analyzed with respect to their importance to bioreactor performance prediction. Results obtained were compared and assessed with respect to their robustness. The inoculated volume of liver cells was found to be the most relevant variable allowing the prediction of low versus medium/high bioreactor performance with an accuracy of 84 %.</description><subject>Bioreactor Culture</subject><subject>Donor Organ</subject><subject>Independent Component Analysis</subject><subject>Leaf Node</subject><subject>Support Vector Machine</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540296744</isbn><isbn>3540296743</isbn><isbn>3540316582</isbn><isbn>9783540316589</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNkEtPwzAQhM1Loi098Qd85RDY9foRH6EFilSpRYJzlLh2CZQY2QGJf08qOHDa1cxotd8wdo5wiQDmClEZAm0qFAdsTEoCoValOGQj1IgFkbRHbGpNufeE1UbKYzYCAlFYI-mUjXN-BQBhrBixx3Xym9b1bex4DLx_8XztU4jpve6c30uLz2Hly_bLJz7zux2_aWPytetjyrz55vPYxcRXaTuk5nVfn7GTUO-yn_7NCXu-u32aLYrl6v5hdr0sMpa2LwiUJ6Aw_GcaZYVpApXeCLtBN8hBBUUoAtoB14GspR5wvDaadOOcAJqwi9-7-SO13danqonxLVcI1b6o6l9R9ANx7lP-</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Schmidt-Heck, Wolfgang</creator><creator>Zeilinger, Katrin</creator><creator>Pless, Gesine</creator><creator>Gerlach, Joerg C.</creator><creator>Pfaff, Michael</creator><creator>Guthke, Reinhard</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2005</creationdate><title>Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data</title><author>Schmidt-Heck, Wolfgang ; Zeilinger, Katrin ; Pless, Gesine ; Gerlach, Joerg C. ; Pfaff, Michael ; Guthke, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-305e303f6747b5927bf38e729d1c03ff5f5312f19573c04a46540e67636bcc203</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bioreactor Culture</topic><topic>Donor Organ</topic><topic>Independent Component Analysis</topic><topic>Leaf Node</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt-Heck, Wolfgang</creatorcontrib><creatorcontrib>Zeilinger, Katrin</creatorcontrib><creatorcontrib>Pless, Gesine</creatorcontrib><creatorcontrib>Gerlach, Joerg C.</creatorcontrib><creatorcontrib>Pfaff, Michael</creatorcontrib><creatorcontrib>Guthke, Reinhard</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt-Heck, Wolfgang</au><au>Zeilinger, Katrin</au><au>Pless, Gesine</au><au>Gerlach, Joerg C.</au><au>Pfaff, Michael</au><au>Guthke, Reinhard</au><au>Martín-Sánchez, Fernando</au><au>Pereira, António Sousa</au><au>Oliveira, José Luís</au><au>Maojo, Víctor</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data</atitle><btitle>Biological and Medical Data Analysis</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>109</spage><epage>119</epage><pages>109-119</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540296744</isbn><isbn>3540296743</isbn><eisbn>3540316582</eisbn><eisbn>9783540316589</eisbn><abstract>Human liver cell bioreactors are used in extracorporeal liver support therapy. To optimize bioreactor operation with respect to clinical application an early prediction of the long-term bioreactor culture performance is of interest. Data from 70 liver cell bioreactor runs labeled by low (n=18), medium (n=34) and high (n=18) performance were analyzed by statistical and machine learning methods. 25 variables characterizing donor organ properties, organ preservation, cell isolation and cell inoculation prior to bioreactor operation were analyzed with respect to their importance to bioreactor performance prediction. Results obtained were compared and assessed with respect to their robustness. The inoculated volume of liver cells was found to be the most relevant variable allowing the prediction of low versus medium/high bioreactor performance with an accuracy of 84 %.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11573067_12</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Biological and Medical Data Analysis, 2005, p.109-119 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_11573067_12 |
source | Springer Books |
subjects | Bioreactor Culture Donor Organ Independent Component Analysis Leaf Node Support Vector Machine |
title | Prediction of the Performance of Human Liver Cell Bioreactors by Donor Organ Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Prediction%20of%20the%20Performance%20of%20Human%20Liver%20Cell%20Bioreactors%20by%20Donor%20Organ%20Data&rft.btitle=Biological%20and%20Medical%20Data%20Analysis&rft.au=Schmidt-Heck,%20Wolfgang&rft.date=2005&rft.spage=109&rft.epage=119&rft.pages=109-119&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540296744&rft.isbn_list=3540296743&rft_id=info:doi/10.1007/11573067_12&rft_dat=%3Cspringer%3Espringer_books_10_1007_11573067_12%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316582&rft.eisbn_list=9783540316589&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |