A Generalized Level Set Formulation of the Mumford-Shah Functional with Shape Prior for Medical Image Segmentation

Image segmentation is an important research topic in medical image analysis area. In this paper, we firstly propose a generalized level set formulation of the Mumford-Shah functional by a sound mathematical definition of line integral. The variational flow is implemented in level set framework and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cheng, Lishui, Fan, Xian, Yang, Jie, Zhu, Yun
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue
container_start_page 61
container_title
container_volume
creator Cheng, Lishui
Fan, Xian
Yang, Jie
Zhu, Yun
description Image segmentation is an important research topic in medical image analysis area. In this paper, we firstly propose a generalized level set formulation of the Mumford-Shah functional by a sound mathematical definition of line integral. The variational flow is implemented in level set framework and thus implicit and intrinsic. By embedding a weighted length term to the original Mumford-Shah functional, the paper presents a generic framework that integrates region, gradient and shape information of an image into the segmentation process naturally. The region force provides a global criterion and increases the speed of convergence, the gradient information allows for a better spatial localization while the shape prior makes the model especially useful to recover objects of interest whose shape can be learned through statistical analysis. The shape prior is represented by the zero-level set of signed distance maps of images and is well consistent with level set based variational framework. Experiments on 2-D synthetic and real images validate this novel method.
doi_str_mv 10.1007/11569541_8
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11569541_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11569541_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-9eedd4609b919ab2757cab135f87ec1ad8ee1e7e85d750f3e9002bf55f64c9b63</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1Loird8AVesgl4_IyXVUVLpVYgFdaRk4ybQB6Vk4DE15MCgtmMNOfOWVxCroHdAmPmDkBpqyQk8QmZWRMLJZngwJU6JRPQAJEQ0p79MW7l-HJOJkwwHlkjxSWZdd0rG0eAtlxPSJjTFTYYXFV-Yk43-I4V3WFPl22oh8r1ZdvQ1tO-QLodat-GPNoVrqDLocmO0FX0o-wLOh4PSJ9C2QY6pugW8zIb4bp2exyN-xqb_lt3RS68qzqc_e4peVnePy8eos3jar2Yb6KMc9tHFjHPpWY2tWBdyo0ymUtBKB8bzMDlMSKgwVjlRjEv0DLGU6-U1zKzqRZTcvPj7Q6hbPYYkrRt37oEWHKsM_mvU3wBudZi8A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A Generalized Level Set Formulation of the Mumford-Shah Functional with Shape Prior for Medical Image Segmentation</title><source>Springer Books</source><creator>Cheng, Lishui ; Fan, Xian ; Yang, Jie ; Zhu, Yun</creator><contributor>Zhang, Changshui ; Liu, Yanxi ; Jiang, Tianzi</contributor><creatorcontrib>Cheng, Lishui ; Fan, Xian ; Yang, Jie ; Zhu, Yun ; Zhang, Changshui ; Liu, Yanxi ; Jiang, Tianzi</creatorcontrib><description>Image segmentation is an important research topic in medical image analysis area. In this paper, we firstly propose a generalized level set formulation of the Mumford-Shah functional by a sound mathematical definition of line integral. The variational flow is implemented in level set framework and thus implicit and intrinsic. By embedding a weighted length term to the original Mumford-Shah functional, the paper presents a generic framework that integrates region, gradient and shape information of an image into the segmentation process naturally. The region force provides a global criterion and increases the speed of convergence, the gradient information allows for a better spatial localization while the shape prior makes the model especially useful to recover objects of interest whose shape can be learned through statistical analysis. The shape prior is represented by the zero-level set of signed distance maps of images and is well consistent with level set based variational framework. Experiments on 2-D synthetic and real images validate this novel method.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540294115</identifier><identifier>ISBN: 3540294112</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540321255</identifier><identifier>EISBN: 354032125X</identifier><identifier>DOI: 10.1007/11569541_8</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active Contour ; Active Contour Model ; Gradient Information ; Image Segmentation ; Medical Image Segmentation</subject><ispartof>Computer Vision for Biomedical Image Applications, 2005, p.61-71</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-9eedd4609b919ab2757cab135f87ec1ad8ee1e7e85d750f3e9002bf55f64c9b63</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11569541_8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11569541_8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27904,38234,41421,42490</link.rule.ids></links><search><contributor>Zhang, Changshui</contributor><contributor>Liu, Yanxi</contributor><contributor>Jiang, Tianzi</contributor><creatorcontrib>Cheng, Lishui</creatorcontrib><creatorcontrib>Fan, Xian</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><title>A Generalized Level Set Formulation of the Mumford-Shah Functional with Shape Prior for Medical Image Segmentation</title><title>Computer Vision for Biomedical Image Applications</title><description>Image segmentation is an important research topic in medical image analysis area. In this paper, we firstly propose a generalized level set formulation of the Mumford-Shah functional by a sound mathematical definition of line integral. The variational flow is implemented in level set framework and thus implicit and intrinsic. By embedding a weighted length term to the original Mumford-Shah functional, the paper presents a generic framework that integrates region, gradient and shape information of an image into the segmentation process naturally. The region force provides a global criterion and increases the speed of convergence, the gradient information allows for a better spatial localization while the shape prior makes the model especially useful to recover objects of interest whose shape can be learned through statistical analysis. The shape prior is represented by the zero-level set of signed distance maps of images and is well consistent with level set based variational framework. Experiments on 2-D synthetic and real images validate this novel method.</description><subject>Active Contour</subject><subject>Active Contour Model</subject><subject>Gradient Information</subject><subject>Image Segmentation</subject><subject>Medical Image Segmentation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540294115</isbn><isbn>3540294112</isbn><isbn>9783540321255</isbn><isbn>354032125X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkMtOwzAQRc1Loird8AVesgl4_IyXVUVLpVYgFdaRk4ybQB6Vk4DE15MCgtmMNOfOWVxCroHdAmPmDkBpqyQk8QmZWRMLJZngwJU6JRPQAJEQ0p79MW7l-HJOJkwwHlkjxSWZdd0rG0eAtlxPSJjTFTYYXFV-Yk43-I4V3WFPl22oh8r1ZdvQ1tO-QLodat-GPNoVrqDLocmO0FX0o-wLOh4PSJ9C2QY6pugW8zIb4bp2exyN-xqb_lt3RS68qzqc_e4peVnePy8eos3jar2Yb6KMc9tHFjHPpWY2tWBdyo0ymUtBKB8bzMDlMSKgwVjlRjEv0DLGU6-U1zKzqRZTcvPj7Q6hbPYYkrRt37oEWHKsM_mvU3wBudZi8A</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Cheng, Lishui</creator><creator>Fan, Xian</creator><creator>Yang, Jie</creator><creator>Zhu, Yun</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2005</creationdate><title>A Generalized Level Set Formulation of the Mumford-Shah Functional with Shape Prior for Medical Image Segmentation</title><author>Cheng, Lishui ; Fan, Xian ; Yang, Jie ; Zhu, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-9eedd4609b919ab2757cab135f87ec1ad8ee1e7e85d750f3e9002bf55f64c9b63</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Active Contour</topic><topic>Active Contour Model</topic><topic>Gradient Information</topic><topic>Image Segmentation</topic><topic>Medical Image Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Lishui</creatorcontrib><creatorcontrib>Fan, Xian</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Lishui</au><au>Fan, Xian</au><au>Yang, Jie</au><au>Zhu, Yun</au><au>Zhang, Changshui</au><au>Liu, Yanxi</au><au>Jiang, Tianzi</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Generalized Level Set Formulation of the Mumford-Shah Functional with Shape Prior for Medical Image Segmentation</atitle><btitle>Computer Vision for Biomedical Image Applications</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>61</spage><epage>71</epage><pages>61-71</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540294115</isbn><isbn>3540294112</isbn><eisbn>9783540321255</eisbn><eisbn>354032125X</eisbn><abstract>Image segmentation is an important research topic in medical image analysis area. In this paper, we firstly propose a generalized level set formulation of the Mumford-Shah functional by a sound mathematical definition of line integral. The variational flow is implemented in level set framework and thus implicit and intrinsic. By embedding a weighted length term to the original Mumford-Shah functional, the paper presents a generic framework that integrates region, gradient and shape information of an image into the segmentation process naturally. The region force provides a global criterion and increases the speed of convergence, the gradient information allows for a better spatial localization while the shape prior makes the model especially useful to recover objects of interest whose shape can be learned through statistical analysis. The shape prior is represented by the zero-level set of signed distance maps of images and is well consistent with level set based variational framework. Experiments on 2-D synthetic and real images validate this novel method.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11569541_8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Vision for Biomedical Image Applications, 2005, p.61-71
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11569541_8
source Springer Books
subjects Active Contour
Active Contour Model
Gradient Information
Image Segmentation
Medical Image Segmentation
title A Generalized Level Set Formulation of the Mumford-Shah Functional with Shape Prior for Medical Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Generalized%20Level%20Set%20Formulation%20of%20the%20Mumford-Shah%20Functional%20with%20Shape%20Prior%20for%20Medical%20Image%20Segmentation&rft.btitle=Computer%20Vision%20for%20Biomedical%20Image%20Applications&rft.au=Cheng,%20Lishui&rft.date=2005&rft.spage=61&rft.epage=71&rft.pages=61-71&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540294115&rft.isbn_list=3540294112&rft_id=info:doi/10.1007/11569541_8&rft_dat=%3Cspringer%3Espringer_books_10_1007_11569541_8%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540321255&rft.eisbn_list=354032125X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true