Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling

Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Florin, Charles, Williams, James, Khamene, Ali, Paragios, Nikos
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue
container_start_page 427
container_title
container_volume
creator Florin, Charles
Williams, James
Khamene, Ali
Paragios, Nikos
description Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angiograms or fluoroscopic images are usually available. Overlaying the pre-operative information from high resoluion acquisition onto the images acquired during intervention greatly helps physician in performing the operation. We propose to register pre-operative DSA or MRS with intra-operative images to bring the two data sets into a single coordinate frame. The method uses the vascular structure, which is present and visible from most of DSA, MRA and x-ray angiogram and fluoroscopic images, to determine the registration parameters. A robust multiple hypothesis framework is built to minimize a fitness measure between the 3D volume and the 2D projection. The measure is based on the distance map computed from the vascular segmentation. Particle Filters are used to resample the hypothesis, and direct them toward the feature space’s zones of maximum likelihood. Promising experimental results demonstrate the potentials of the method.
doi_str_mv 10.1007/11569541_43
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11569541_43</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11569541_43</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-ce29006bd81b95b7fcb9d2d89fb271293c9fa19b5755c3d3bbf854885dc349373</originalsourceid><addsrcrecordid>eNpNUD1PwzAUNF8SVenEH_DKEPDzs-O8sSpflYqQWorYIjtxQiDEJQ4D_54gEOKWG053pzvGTkGcgxDmAkCnpBXkCvfYjEyGWgmUILXeZxNIARJERQd_miQ1eg7ZRKCQCRmFx2wW44sYgZCSTCfsce3rJg69HZrQ8VBxvOTzrm5C3dvdc1Nw25X8KVnbT758s7WPfBubruYb__7hu6GxLb8L3eD5wvZt4Bv7tmtH_YQdVbaNfvbLU7a9vnpY3Car-5vlYr5KImQ0JIWXJETqygwcaWeqwlEpy4wqJw1IwoIqC-S00brAEp2rMq2yTJfFuBQNTtnZT27c9WOt73MXwmvMQeTfn-X_PsMvSOBYSQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling</title><source>Springer Books</source><creator>Florin, Charles ; Williams, James ; Khamene, Ali ; Paragios, Nikos</creator><contributor>Zhang, Changshui ; Liu, Yanxi ; Jiang, Tianzi</contributor><creatorcontrib>Florin, Charles ; Williams, James ; Khamene, Ali ; Paragios, Nikos ; Zhang, Changshui ; Liu, Yanxi ; Jiang, Tianzi</creatorcontrib><description>Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angiograms or fluoroscopic images are usually available. Overlaying the pre-operative information from high resoluion acquisition onto the images acquired during intervention greatly helps physician in performing the operation. We propose to register pre-operative DSA or MRS with intra-operative images to bring the two data sets into a single coordinate frame. The method uses the vascular structure, which is present and visible from most of DSA, MRA and x-ray angiogram and fluoroscopic images, to determine the registration parameters. A robust multiple hypothesis framework is built to minimize a fitness measure between the 3D volume and the 2D projection. The measure is based on the distance map computed from the vascular segmentation. Particle Filters are used to resample the hypothesis, and direct them toward the feature space’s zones of maximum likelihood. Promising experimental results demonstrate the potentials of the method.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540294115</identifier><identifier>ISBN: 3540294112</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540321255</identifier><identifier>EISBN: 354032125X</identifier><identifier>DOI: 10.1007/11569541_43</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Digital Subtraction Angiography ; Gradient Descent ; Magnetic Resonance Angiography ; Particle Filter ; Portal Image</subject><ispartof>Computer Vision for Biomedical Image Applications, 2005, p.427-436</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11569541_43$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11569541_43$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><contributor>Zhang, Changshui</contributor><contributor>Liu, Yanxi</contributor><contributor>Jiang, Tianzi</contributor><creatorcontrib>Florin, Charles</creatorcontrib><creatorcontrib>Williams, James</creatorcontrib><creatorcontrib>Khamene, Ali</creatorcontrib><creatorcontrib>Paragios, Nikos</creatorcontrib><title>Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling</title><title>Computer Vision for Biomedical Image Applications</title><description>Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angiograms or fluoroscopic images are usually available. Overlaying the pre-operative information from high resoluion acquisition onto the images acquired during intervention greatly helps physician in performing the operation. We propose to register pre-operative DSA or MRS with intra-operative images to bring the two data sets into a single coordinate frame. The method uses the vascular structure, which is present and visible from most of DSA, MRA and x-ray angiogram and fluoroscopic images, to determine the registration parameters. A robust multiple hypothesis framework is built to minimize a fitness measure between the 3D volume and the 2D projection. The measure is based on the distance map computed from the vascular segmentation. Particle Filters are used to resample the hypothesis, and direct them toward the feature space’s zones of maximum likelihood. Promising experimental results demonstrate the potentials of the method.</description><subject>Digital Subtraction Angiography</subject><subject>Gradient Descent</subject><subject>Magnetic Resonance Angiography</subject><subject>Particle Filter</subject><subject>Portal Image</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540294115</isbn><isbn>3540294112</isbn><isbn>9783540321255</isbn><isbn>354032125X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNUD1PwzAUNF8SVenEH_DKEPDzs-O8sSpflYqQWorYIjtxQiDEJQ4D_54gEOKWG053pzvGTkGcgxDmAkCnpBXkCvfYjEyGWgmUILXeZxNIARJERQd_miQ1eg7ZRKCQCRmFx2wW44sYgZCSTCfsce3rJg69HZrQ8VBxvOTzrm5C3dvdc1Nw25X8KVnbT758s7WPfBubruYb__7hu6GxLb8L3eD5wvZt4Bv7tmtH_YQdVbaNfvbLU7a9vnpY3Car-5vlYr5KImQ0JIWXJETqygwcaWeqwlEpy4wqJw1IwoIqC-S00brAEp2rMq2yTJfFuBQNTtnZT27c9WOt73MXwmvMQeTfn-X_PsMvSOBYSQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Florin, Charles</creator><creator>Williams, James</creator><creator>Khamene, Ali</creator><creator>Paragios, Nikos</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2005</creationdate><title>Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling</title><author>Florin, Charles ; Williams, James ; Khamene, Ali ; Paragios, Nikos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-ce29006bd81b95b7fcb9d2d89fb271293c9fa19b5755c3d3bbf854885dc349373</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Digital Subtraction Angiography</topic><topic>Gradient Descent</topic><topic>Magnetic Resonance Angiography</topic><topic>Particle Filter</topic><topic>Portal Image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florin, Charles</creatorcontrib><creatorcontrib>Williams, James</creatorcontrib><creatorcontrib>Khamene, Ali</creatorcontrib><creatorcontrib>Paragios, Nikos</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florin, Charles</au><au>Williams, James</au><au>Khamene, Ali</au><au>Paragios, Nikos</au><au>Zhang, Changshui</au><au>Liu, Yanxi</au><au>Jiang, Tianzi</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling</atitle><btitle>Computer Vision for Biomedical Image Applications</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>427</spage><epage>436</epage><pages>427-436</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540294115</isbn><isbn>3540294112</isbn><eisbn>9783540321255</eisbn><eisbn>354032125X</eisbn><abstract>Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angiograms or fluoroscopic images are usually available. Overlaying the pre-operative information from high resoluion acquisition onto the images acquired during intervention greatly helps physician in performing the operation. We propose to register pre-operative DSA or MRS with intra-operative images to bring the two data sets into a single coordinate frame. The method uses the vascular structure, which is present and visible from most of DSA, MRA and x-ray angiogram and fluoroscopic images, to determine the registration parameters. A robust multiple hypothesis framework is built to minimize a fitness measure between the 3D volume and the 2D projection. The measure is based on the distance map computed from the vascular segmentation. Particle Filters are used to resample the hypothesis, and direct them toward the feature space’s zones of maximum likelihood. Promising experimental results demonstrate the potentials of the method.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11569541_43</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Vision for Biomedical Image Applications, 2005, p.427-436
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11569541_43
source Springer Books
subjects Digital Subtraction Angiography
Gradient Descent
Magnetic Resonance Angiography
Particle Filter
Portal Image
title Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Registration%20of%203D%20Angiographic%20and%20X-Ray%20Images%20Using%20Sequential%20Monte%20Carlo%20Sampling&rft.btitle=Computer%20Vision%20for%20Biomedical%20Image%20Applications&rft.au=Florin,%20Charles&rft.date=2005&rft.spage=427&rft.epage=436&rft.pages=427-436&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540294115&rft.isbn_list=3540294112&rft_id=info:doi/10.1007/11569541_43&rft_dat=%3Cspringer%3Espringer_books_10_1007_11569541_43%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540321255&rft.eisbn_list=354032125X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true