Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling
Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angio...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 436 |
---|---|
container_issue | |
container_start_page | 427 |
container_title | |
container_volume | |
creator | Florin, Charles Williams, James Khamene, Ali Paragios, Nikos |
description | Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angiograms or fluoroscopic images are usually available. Overlaying the pre-operative information from high resoluion acquisition onto the images acquired during intervention greatly helps physician in performing the operation. We propose to register pre-operative DSA or MRS with intra-operative images to bring the two data sets into a single coordinate frame. The method uses the vascular structure, which is present and visible from most of DSA, MRA and x-ray angiogram and fluoroscopic images, to determine the registration parameters. A robust multiple hypothesis framework is built to minimize a fitness measure between the 3D volume and the 2D projection. The measure is based on the distance map computed from the vascular segmentation. Particle Filters are used to resample the hypothesis, and direct them toward the feature space’s zones of maximum likelihood. Promising experimental results demonstrate the potentials of the method. |
doi_str_mv | 10.1007/11569541_43 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11569541_43</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11569541_43</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-ce29006bd81b95b7fcb9d2d89fb271293c9fa19b5755c3d3bbf854885dc349373</originalsourceid><addsrcrecordid>eNpNUD1PwzAUNF8SVenEH_DKEPDzs-O8sSpflYqQWorYIjtxQiDEJQ4D_54gEOKWG053pzvGTkGcgxDmAkCnpBXkCvfYjEyGWgmUILXeZxNIARJERQd_miQ1eg7ZRKCQCRmFx2wW44sYgZCSTCfsce3rJg69HZrQ8VBxvOTzrm5C3dvdc1Nw25X8KVnbT758s7WPfBubruYb__7hu6GxLb8L3eD5wvZt4Bv7tmtH_YQdVbaNfvbLU7a9vnpY3Car-5vlYr5KImQ0JIWXJETqygwcaWeqwlEpy4wqJw1IwoIqC-S00brAEp2rMq2yTJfFuBQNTtnZT27c9WOt73MXwmvMQeTfn-X_PsMvSOBYSQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling</title><source>Springer Books</source><creator>Florin, Charles ; Williams, James ; Khamene, Ali ; Paragios, Nikos</creator><contributor>Zhang, Changshui ; Liu, Yanxi ; Jiang, Tianzi</contributor><creatorcontrib>Florin, Charles ; Williams, James ; Khamene, Ali ; Paragios, Nikos ; Zhang, Changshui ; Liu, Yanxi ; Jiang, Tianzi</creatorcontrib><description>Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angiograms or fluoroscopic images are usually available. Overlaying the pre-operative information from high resoluion acquisition onto the images acquired during intervention greatly helps physician in performing the operation. We propose to register pre-operative DSA or MRS with intra-operative images to bring the two data sets into a single coordinate frame. The method uses the vascular structure, which is present and visible from most of DSA, MRA and x-ray angiogram and fluoroscopic images, to determine the registration parameters. A robust multiple hypothesis framework is built to minimize a fitness measure between the 3D volume and the 2D projection. The measure is based on the distance map computed from the vascular segmentation. Particle Filters are used to resample the hypothesis, and direct them toward the feature space’s zones of maximum likelihood. Promising experimental results demonstrate the potentials of the method.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540294115</identifier><identifier>ISBN: 3540294112</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540321255</identifier><identifier>EISBN: 354032125X</identifier><identifier>DOI: 10.1007/11569541_43</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Digital Subtraction Angiography ; Gradient Descent ; Magnetic Resonance Angiography ; Particle Filter ; Portal Image</subject><ispartof>Computer Vision for Biomedical Image Applications, 2005, p.427-436</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11569541_43$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11569541_43$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><contributor>Zhang, Changshui</contributor><contributor>Liu, Yanxi</contributor><contributor>Jiang, Tianzi</contributor><creatorcontrib>Florin, Charles</creatorcontrib><creatorcontrib>Williams, James</creatorcontrib><creatorcontrib>Khamene, Ali</creatorcontrib><creatorcontrib>Paragios, Nikos</creatorcontrib><title>Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling</title><title>Computer Vision for Biomedical Image Applications</title><description>Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angiograms or fluoroscopic images are usually available. Overlaying the pre-operative information from high resoluion acquisition onto the images acquired during intervention greatly helps physician in performing the operation. We propose to register pre-operative DSA or MRS with intra-operative images to bring the two data sets into a single coordinate frame. The method uses the vascular structure, which is present and visible from most of DSA, MRA and x-ray angiogram and fluoroscopic images, to determine the registration parameters. A robust multiple hypothesis framework is built to minimize a fitness measure between the 3D volume and the 2D projection. The measure is based on the distance map computed from the vascular segmentation. Particle Filters are used to resample the hypothesis, and direct them toward the feature space’s zones of maximum likelihood. Promising experimental results demonstrate the potentials of the method.</description><subject>Digital Subtraction Angiography</subject><subject>Gradient Descent</subject><subject>Magnetic Resonance Angiography</subject><subject>Particle Filter</subject><subject>Portal Image</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540294115</isbn><isbn>3540294112</isbn><isbn>9783540321255</isbn><isbn>354032125X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNUD1PwzAUNF8SVenEH_DKEPDzs-O8sSpflYqQWorYIjtxQiDEJQ4D_54gEOKWG053pzvGTkGcgxDmAkCnpBXkCvfYjEyGWgmUILXeZxNIARJERQd_miQ1eg7ZRKCQCRmFx2wW44sYgZCSTCfsce3rJg69HZrQ8VBxvOTzrm5C3dvdc1Nw25X8KVnbT758s7WPfBubruYb__7hu6GxLb8L3eD5wvZt4Bv7tmtH_YQdVbaNfvbLU7a9vnpY3Car-5vlYr5KImQ0JIWXJETqygwcaWeqwlEpy4wqJw1IwoIqC-S00brAEp2rMq2yTJfFuBQNTtnZT27c9WOt73MXwmvMQeTfn-X_PsMvSOBYSQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Florin, Charles</creator><creator>Williams, James</creator><creator>Khamene, Ali</creator><creator>Paragios, Nikos</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2005</creationdate><title>Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling</title><author>Florin, Charles ; Williams, James ; Khamene, Ali ; Paragios, Nikos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-ce29006bd81b95b7fcb9d2d89fb271293c9fa19b5755c3d3bbf854885dc349373</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Digital Subtraction Angiography</topic><topic>Gradient Descent</topic><topic>Magnetic Resonance Angiography</topic><topic>Particle Filter</topic><topic>Portal Image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florin, Charles</creatorcontrib><creatorcontrib>Williams, James</creatorcontrib><creatorcontrib>Khamene, Ali</creatorcontrib><creatorcontrib>Paragios, Nikos</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florin, Charles</au><au>Williams, James</au><au>Khamene, Ali</au><au>Paragios, Nikos</au><au>Zhang, Changshui</au><au>Liu, Yanxi</au><au>Jiang, Tianzi</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling</atitle><btitle>Computer Vision for Biomedical Image Applications</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>427</spage><epage>436</epage><pages>427-436</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540294115</isbn><isbn>3540294112</isbn><eisbn>9783540321255</eisbn><eisbn>354032125X</eisbn><abstract>Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angiograms or fluoroscopic images are usually available. Overlaying the pre-operative information from high resoluion acquisition onto the images acquired during intervention greatly helps physician in performing the operation. We propose to register pre-operative DSA or MRS with intra-operative images to bring the two data sets into a single coordinate frame. The method uses the vascular structure, which is present and visible from most of DSA, MRA and x-ray angiogram and fluoroscopic images, to determine the registration parameters. A robust multiple hypothesis framework is built to minimize a fitness measure between the 3D volume and the 2D projection. The measure is based on the distance map computed from the vascular segmentation. Particle Filters are used to resample the hypothesis, and direct them toward the feature space’s zones of maximum likelihood. Promising experimental results demonstrate the potentials of the method.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11569541_43</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computer Vision for Biomedical Image Applications, 2005, p.427-436 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_11569541_43 |
source | Springer Books |
subjects | Digital Subtraction Angiography Gradient Descent Magnetic Resonance Angiography Particle Filter Portal Image |
title | Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Registration%20of%203D%20Angiographic%20and%20X-Ray%20Images%20Using%20Sequential%20Monte%20Carlo%20Sampling&rft.btitle=Computer%20Vision%20for%20Biomedical%20Image%20Applications&rft.au=Florin,%20Charles&rft.date=2005&rft.spage=427&rft.epage=436&rft.pages=427-436&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540294115&rft.isbn_list=3540294112&rft_id=info:doi/10.1007/11569541_43&rft_dat=%3Cspringer%3Espringer_books_10_1007_11569541_43%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540321255&rft.eisbn_list=354032125X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |