Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI
A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atl...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | Pt 1 |
container_start_page | 188 |
container_title | |
container_volume | 8 |
creator | Maddah, Mahnaz Mewes, Andrea U. J. Haker, Steven Grimson, W. Eric L. Warfield, Simon K. |
description | A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their B-spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts. |
doi_str_mv | 10.1007/11566465_24 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pubmed_sprin</sourceid><recordid>TN_cdi_springer_books_10_1007_11566465_24</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16685845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4f75e779e896c58fac45b5cff60f5e5fa9f36f146d8f452c1079eebbf3679a3a3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhutXhCAn76ZXD6udfveIIEICMTEYj013aXWVdcm2HPz3lqDGOcxM3nkymXkRugRyA4SoWwAhJZfCUn6EhkZpJjhhlBjOj1EfJEDBGDcnfzNqGFXmFPUJI7QwirMeGsb4TnIw0Frpc9QDKbXQXPTRbLRLbeOSX-NR2rhY3LmY-_FmF5Pv6s9X3Ab88lYnj5cuZQlP6zLnVeeqFHHo2gZPVsun-QU6C24T_fCnDtDz9H41nhWLx4f5eLQoKmogFTwo4ZUyXhtZCR1cxUUpqhAkCcKL4ExgMgCXax24oBWQzPqyzKoyjjk2QFeHvdtd2fi13XZ147ov-_tSBq4PQNzu7_edLdv2I1ogdu-o_eco-wbqVF8u</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI</title><source>MEDLINE</source><source>Springer Books</source><creator>Maddah, Mahnaz ; Mewes, Andrea U. J. ; Haker, Steven ; Grimson, W. Eric L. ; Warfield, Simon K.</creator><contributor>Duncan, James S. ; Gerig, Guido</contributor><creatorcontrib>Maddah, Mahnaz ; Mewes, Andrea U. J. ; Haker, Steven ; Grimson, W. Eric L. ; Warfield, Simon K. ; Duncan, James S. ; Gerig, Guido</creatorcontrib><description>A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their B-spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540293279</identifier><identifier>ISBN: 3540293272</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540320944</identifier><identifier>EISBN: 3540320946</identifier><identifier>DOI: 10.1007/11566465_24</identifier><identifier>PMID: 16685845</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Anatomy, Artistic ; Artificial Intelligence ; Baseline Image ; Brain - cytology ; Cluster Label ; Computer Simulation ; Diffusion Magnetic Resonance Imaging - methods ; Fiber Tract ; Fractional Anisotropy ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Medical Illustration ; Models, Anatomic ; Nerve Fibers, Myelinated - ultrastructure ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Spectral Cluster</subject><ispartof>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, 2005, Vol.8 (Pt 1), p.188-195</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4f75e779e896c58fac45b5cff60f5e5fa9f36f146d8f452c1079eebbf3679a3a3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11566465_24$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11566465_24$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16685845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Duncan, James S.</contributor><contributor>Gerig, Guido</contributor><creatorcontrib>Maddah, Mahnaz</creatorcontrib><creatorcontrib>Mewes, Andrea U. J.</creatorcontrib><creatorcontrib>Haker, Steven</creatorcontrib><creatorcontrib>Grimson, W. Eric L.</creatorcontrib><creatorcontrib>Warfield, Simon K.</creatorcontrib><title>Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI</title><title>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005</title><addtitle>Med Image Comput Comput Assist Interv</addtitle><description>A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their B-spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts.</description><subject>Algorithms</subject><subject>Anatomy, Artistic</subject><subject>Artificial Intelligence</subject><subject>Baseline Image</subject><subject>Brain - cytology</subject><subject>Cluster Label</subject><subject>Computer Simulation</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Fiber Tract</subject><subject>Fractional Anisotropy</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Medical Illustration</subject><subject>Models, Anatomic</subject><subject>Nerve Fibers, Myelinated - ultrastructure</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Spectral Cluster</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540293279</isbn><isbn>3540293272</isbn><isbn>9783540320944</isbn><isbn>3540320946</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid>EIF</sourceid><recordid>eNpNkE1PAjEQhutXhCAn76ZXD6udfveIIEICMTEYj013aXWVdcm2HPz3lqDGOcxM3nkymXkRugRyA4SoWwAhJZfCUn6EhkZpJjhhlBjOj1EfJEDBGDcnfzNqGFXmFPUJI7QwirMeGsb4TnIw0Frpc9QDKbXQXPTRbLRLbeOSX-NR2rhY3LmY-_FmF5Pv6s9X3Ab88lYnj5cuZQlP6zLnVeeqFHHo2gZPVsun-QU6C24T_fCnDtDz9H41nhWLx4f5eLQoKmogFTwo4ZUyXhtZCR1cxUUpqhAkCcKL4ExgMgCXax24oBWQzPqyzKoyjjk2QFeHvdtd2fi13XZ147ov-_tSBq4PQNzu7_edLdv2I1ogdu-o_eco-wbqVF8u</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Maddah, Mahnaz</creator><creator>Mewes, Andrea U. J.</creator><creator>Haker, Steven</creator><creator>Grimson, W. Eric L.</creator><creator>Warfield, Simon K.</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>2005</creationdate><title>Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI</title><author>Maddah, Mahnaz ; Mewes, Andrea U. J. ; Haker, Steven ; Grimson, W. Eric L. ; Warfield, Simon K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4f75e779e896c58fac45b5cff60f5e5fa9f36f146d8f452c1079eebbf3679a3a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Anatomy, Artistic</topic><topic>Artificial Intelligence</topic><topic>Baseline Image</topic><topic>Brain - cytology</topic><topic>Cluster Label</topic><topic>Computer Simulation</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Fiber Tract</topic><topic>Fractional Anisotropy</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Medical Illustration</topic><topic>Models, Anatomic</topic><topic>Nerve Fibers, Myelinated - ultrastructure</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Spectral Cluster</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maddah, Mahnaz</creatorcontrib><creatorcontrib>Mewes, Andrea U. J.</creatorcontrib><creatorcontrib>Haker, Steven</creatorcontrib><creatorcontrib>Grimson, W. Eric L.</creatorcontrib><creatorcontrib>Warfield, Simon K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maddah, Mahnaz</au><au>Mewes, Andrea U. J.</au><au>Haker, Steven</au><au>Grimson, W. Eric L.</au><au>Warfield, Simon K.</au><au>Duncan, James S.</au><au>Gerig, Guido</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI</atitle><btitle>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005</btitle><addtitle>Med Image Comput Comput Assist Interv</addtitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><volume>8</volume><issue>Pt 1</issue><spage>188</spage><epage>195</epage><pages>188-195</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540293279</isbn><isbn>3540293272</isbn><eisbn>9783540320944</eisbn><eisbn>3540320946</eisbn><abstract>A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their B-spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>16685845</pmid><doi>10.1007/11566465_24</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, 2005, Vol.8 (Pt 1), p.188-195 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_11566465_24 |
source | MEDLINE; Springer Books |
subjects | Algorithms Anatomy, Artistic Artificial Intelligence Baseline Image Brain - cytology Cluster Label Computer Simulation Diffusion Magnetic Resonance Imaging - methods Fiber Tract Fractional Anisotropy Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Medical Illustration Models, Anatomic Nerve Fibers, Myelinated - ultrastructure Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Spectral Cluster |
title | Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Automated%20Atlas-Based%20Clustering%20of%20White%20Matter%20Fiber%20Tracts%20from%20DTMRI&rft.btitle=Medical%20Image%20Computing%20and%20Computer-Assisted%20Intervention%20%E2%80%93%20MICCAI%202005&rft.au=Maddah,%20Mahnaz&rft.date=2005&rft.volume=8&rft.issue=Pt%201&rft.spage=188&rft.epage=195&rft.pages=188-195&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540293279&rft.isbn_list=3540293272&rft_id=info:doi/10.1007/11566465_24&rft_dat=%3Cpubmed_sprin%3E16685845%3C/pubmed_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540320944&rft.eisbn_list=3540320946&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16685845&rfr_iscdi=true |