Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI

A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maddah, Mahnaz, Mewes, Andrea U. J., Haker, Steven, Grimson, W. Eric L., Warfield, Simon K.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue Pt 1
container_start_page 188
container_title
container_volume 8
creator Maddah, Mahnaz
Mewes, Andrea U. J.
Haker, Steven
Grimson, W. Eric L.
Warfield, Simon K.
description A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their B-spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts.
doi_str_mv 10.1007/11566465_24
format Book Chapter
fullrecord <record><control><sourceid>pubmed_sprin</sourceid><recordid>TN_cdi_springer_books_10_1007_11566465_24</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16685845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4f75e779e896c58fac45b5cff60f5e5fa9f36f146d8f452c1079eebbf3679a3a3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhutXhCAn76ZXD6udfveIIEICMTEYj013aXWVdcm2HPz3lqDGOcxM3nkymXkRugRyA4SoWwAhJZfCUn6EhkZpJjhhlBjOj1EfJEDBGDcnfzNqGFXmFPUJI7QwirMeGsb4TnIw0Frpc9QDKbXQXPTRbLRLbeOSX-NR2rhY3LmY-_FmF5Pv6s9X3Ab88lYnj5cuZQlP6zLnVeeqFHHo2gZPVsun-QU6C24T_fCnDtDz9H41nhWLx4f5eLQoKmogFTwo4ZUyXhtZCR1cxUUpqhAkCcKL4ExgMgCXax24oBWQzPqyzKoyjjk2QFeHvdtd2fi13XZ147ov-_tSBq4PQNzu7_edLdv2I1ogdu-o_eco-wbqVF8u</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI</title><source>MEDLINE</source><source>Springer Books</source><creator>Maddah, Mahnaz ; Mewes, Andrea U. J. ; Haker, Steven ; Grimson, W. Eric L. ; Warfield, Simon K.</creator><contributor>Duncan, James S. ; Gerig, Guido</contributor><creatorcontrib>Maddah, Mahnaz ; Mewes, Andrea U. J. ; Haker, Steven ; Grimson, W. Eric L. ; Warfield, Simon K. ; Duncan, James S. ; Gerig, Guido</creatorcontrib><description>A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their B-spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540293279</identifier><identifier>ISBN: 3540293272</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540320944</identifier><identifier>EISBN: 3540320946</identifier><identifier>DOI: 10.1007/11566465_24</identifier><identifier>PMID: 16685845</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Anatomy, Artistic ; Artificial Intelligence ; Baseline Image ; Brain - cytology ; Cluster Label ; Computer Simulation ; Diffusion Magnetic Resonance Imaging - methods ; Fiber Tract ; Fractional Anisotropy ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Medical Illustration ; Models, Anatomic ; Nerve Fibers, Myelinated - ultrastructure ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Spectral Cluster</subject><ispartof>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, 2005, Vol.8 (Pt 1), p.188-195</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4f75e779e896c58fac45b5cff60f5e5fa9f36f146d8f452c1079eebbf3679a3a3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11566465_24$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11566465_24$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16685845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Duncan, James S.</contributor><contributor>Gerig, Guido</contributor><creatorcontrib>Maddah, Mahnaz</creatorcontrib><creatorcontrib>Mewes, Andrea U. J.</creatorcontrib><creatorcontrib>Haker, Steven</creatorcontrib><creatorcontrib>Grimson, W. Eric L.</creatorcontrib><creatorcontrib>Warfield, Simon K.</creatorcontrib><title>Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI</title><title>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005</title><addtitle>Med Image Comput Comput Assist Interv</addtitle><description>A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their B-spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts.</description><subject>Algorithms</subject><subject>Anatomy, Artistic</subject><subject>Artificial Intelligence</subject><subject>Baseline Image</subject><subject>Brain - cytology</subject><subject>Cluster Label</subject><subject>Computer Simulation</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Fiber Tract</subject><subject>Fractional Anisotropy</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Medical Illustration</subject><subject>Models, Anatomic</subject><subject>Nerve Fibers, Myelinated - ultrastructure</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Spectral Cluster</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540293279</isbn><isbn>3540293272</isbn><isbn>9783540320944</isbn><isbn>3540320946</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid>EIF</sourceid><recordid>eNpNkE1PAjEQhutXhCAn76ZXD6udfveIIEICMTEYj013aXWVdcm2HPz3lqDGOcxM3nkymXkRugRyA4SoWwAhJZfCUn6EhkZpJjhhlBjOj1EfJEDBGDcnfzNqGFXmFPUJI7QwirMeGsb4TnIw0Frpc9QDKbXQXPTRbLRLbeOSX-NR2rhY3LmY-_FmF5Pv6s9X3Ab88lYnj5cuZQlP6zLnVeeqFHHo2gZPVsun-QU6C24T_fCnDtDz9H41nhWLx4f5eLQoKmogFTwo4ZUyXhtZCR1cxUUpqhAkCcKL4ExgMgCXax24oBWQzPqyzKoyjjk2QFeHvdtd2fi13XZ147ov-_tSBq4PQNzu7_edLdv2I1ogdu-o_eco-wbqVF8u</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Maddah, Mahnaz</creator><creator>Mewes, Andrea U. J.</creator><creator>Haker, Steven</creator><creator>Grimson, W. Eric L.</creator><creator>Warfield, Simon K.</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>2005</creationdate><title>Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI</title><author>Maddah, Mahnaz ; Mewes, Andrea U. J. ; Haker, Steven ; Grimson, W. Eric L. ; Warfield, Simon K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4f75e779e896c58fac45b5cff60f5e5fa9f36f146d8f452c1079eebbf3679a3a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Anatomy, Artistic</topic><topic>Artificial Intelligence</topic><topic>Baseline Image</topic><topic>Brain - cytology</topic><topic>Cluster Label</topic><topic>Computer Simulation</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Fiber Tract</topic><topic>Fractional Anisotropy</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Medical Illustration</topic><topic>Models, Anatomic</topic><topic>Nerve Fibers, Myelinated - ultrastructure</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Spectral Cluster</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maddah, Mahnaz</creatorcontrib><creatorcontrib>Mewes, Andrea U. J.</creatorcontrib><creatorcontrib>Haker, Steven</creatorcontrib><creatorcontrib>Grimson, W. Eric L.</creatorcontrib><creatorcontrib>Warfield, Simon K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maddah, Mahnaz</au><au>Mewes, Andrea U. J.</au><au>Haker, Steven</au><au>Grimson, W. Eric L.</au><au>Warfield, Simon K.</au><au>Duncan, James S.</au><au>Gerig, Guido</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI</atitle><btitle>Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005</btitle><addtitle>Med Image Comput Comput Assist Interv</addtitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><volume>8</volume><issue>Pt 1</issue><spage>188</spage><epage>195</epage><pages>188-195</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540293279</isbn><isbn>3540293272</isbn><eisbn>9783540320944</eisbn><eisbn>3540320946</eisbn><abstract>A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their B-spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>16685845</pmid><doi>10.1007/11566465_24</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, 2005, Vol.8 (Pt 1), p.188-195
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11566465_24
source MEDLINE; Springer Books
subjects Algorithms
Anatomy, Artistic
Artificial Intelligence
Baseline Image
Brain - cytology
Cluster Label
Computer Simulation
Diffusion Magnetic Resonance Imaging - methods
Fiber Tract
Fractional Anisotropy
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Medical Illustration
Models, Anatomic
Nerve Fibers, Myelinated - ultrastructure
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Spectral Cluster
title Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Automated%20Atlas-Based%20Clustering%20of%20White%20Matter%20Fiber%20Tracts%20from%20DTMRI&rft.btitle=Medical%20Image%20Computing%20and%20Computer-Assisted%20Intervention%20%E2%80%93%20MICCAI%202005&rft.au=Maddah,%20Mahnaz&rft.date=2005&rft.volume=8&rft.issue=Pt%201&rft.spage=188&rft.epage=195&rft.pages=188-195&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540293279&rft.isbn_list=3540293272&rft_id=info:doi/10.1007/11566465_24&rft_dat=%3Cpubmed_sprin%3E16685845%3C/pubmed_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540320944&rft.eisbn_list=3540320946&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16685845&rfr_iscdi=true