Automated Information Mining on Multimedia TV News Archives

This paper addresses an integrated information mining techniques for multimedia TV-news archive. The utilizes techniques from the fields of acoustic, image, and video analysis, for information retrieval on news story title, newsman and scene identification. The goal is to construct a compact yet mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-Based Intelligent Information and Engineering Systems 2005, p.1238-1244
Hauptverfasser: Lai, P. S., Cheng, S. S., Sun, S. Y., Huang, T. Y., Su, J. M., Xu, Y. Y., Chen, Y. H., Chuang, S. C., Tseng, C. L., Hsieh, C. L., Lu, Y. L., Shen, Y. C., Chen, J. R., Nie, J. B., Tsai, F. P., Huang, H. C., Pao, H. T., Fu, Hsin-Chia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1244
container_issue
container_start_page 1238
container_title Knowledge-Based Intelligent Information and Engineering Systems
container_volume
creator Lai, P. S.
Cheng, S. S.
Sun, S. Y.
Huang, T. Y.
Su, J. M.
Xu, Y. Y.
Chen, Y. H.
Chuang, S. C.
Tseng, C. L.
Hsieh, C. L.
Lu, Y. L.
Shen, Y. C.
Chen, J. R.
Nie, J. B.
Tsai, F. P.
Huang, H. C.
Pao, H. T.
Fu, Hsin-Chia
description This paper addresses an integrated information mining techniques for multimedia TV-news archive. The utilizes techniques from the fields of acoustic, image, and video analysis, for information retrieval on news story title, newsman and scene identification. The goal is to construct a compact yet meaningful abstraction of broadcast news video, allowing users to browse through large amounts of data in a non-linear fashion with flexibility and efficiency. By using acoustic analysis, the system can classify video into news versus commercials, with 90% accuracy on a data set of 400 hours TV-news recorded off the air from July 2003 to August of 2004. By applying speaker identification and/or image detection techniques, each news stories can be segmented with an accuracy of 96%. On screen captions or subtitles are recognized by OCR techniques to produce the text title of each news stories. The extracted title words can be used to link or to navigate more related News contents on the WWW. In cooperation with facial and scene analysis and recognition techniques, OCR results can provide users with multimodality query for specific news stories. Some experimental results are presented and discussed for the system reliability and performance evaluation and comparison.
doi_str_mv 10.1007/11552451_171
format Article
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11552451_171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11552451_171</sourcerecordid><originalsourceid>FETCH-LOGICAL-s190t-86c0e17e78535868dcfd5319c99a0371d335d919980529a602bd6421f085c35b3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AUxNd_YK25-QFyFqLv5eXt7sNTKVULVS_Va0iyG422iWRT_fqm6MG5zMDA8GOUukC4QgBzjcicZow5GjxQkRhLnAGhWE2HaoIaMSHK5Eid7YvUWmE6VhMgSBMxGZ2qKIR3GEVoWfRE3cx2Q7ctBu_iZVt3_Ribro0fmrZpX-N92m2GZutdU8Trl_jRf4d41ldvzZcP5-qkLjbBR38-Vc-3i_X8Plk93S3ns1USUGBIrK7Ao_HGMrHV1lW14xG6EimADDoidoIiFjiVQkNaOp2lWIPlirikqbr83Q2f_Ujl-7zsuo-QI-T7W_L_t9AP38RNaw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automated Information Mining on Multimedia TV News Archives</title><source>Springer Books</source><creator>Lai, P. S. ; Cheng, S. S. ; Sun, S. Y. ; Huang, T. Y. ; Su, J. M. ; Xu, Y. Y. ; Chen, Y. H. ; Chuang, S. C. ; Tseng, C. L. ; Hsieh, C. L. ; Lu, Y. L. ; Shen, Y. C. ; Chen, J. R. ; Nie, J. B. ; Tsai, F. P. ; Huang, H. C. ; Pao, H. T. ; Fu, Hsin-Chia</creator><contributor>Howlett, Robert J. ; Jain, Lakhmi C. ; Khosla, Rajiv</contributor><creatorcontrib>Lai, P. S. ; Cheng, S. S. ; Sun, S. Y. ; Huang, T. Y. ; Su, J. M. ; Xu, Y. Y. ; Chen, Y. H. ; Chuang, S. C. ; Tseng, C. L. ; Hsieh, C. L. ; Lu, Y. L. ; Shen, Y. C. ; Chen, J. R. ; Nie, J. B. ; Tsai, F. P. ; Huang, H. C. ; Pao, H. T. ; Fu, Hsin-Chia ; Howlett, Robert J. ; Jain, Lakhmi C. ; Khosla, Rajiv</creatorcontrib><description>This paper addresses an integrated information mining techniques for multimedia TV-news archive. The utilizes techniques from the fields of acoustic, image, and video analysis, for information retrieval on news story title, newsman and scene identification. The goal is to construct a compact yet meaningful abstraction of broadcast news video, allowing users to browse through large amounts of data in a non-linear fashion with flexibility and efficiency. By using acoustic analysis, the system can classify video into news versus commercials, with 90% accuracy on a data set of 400 hours TV-news recorded off the air from July 2003 to August of 2004. By applying speaker identification and/or image detection techniques, each news stories can be segmented with an accuracy of 96%. On screen captions or subtitles are recognized by OCR techniques to produce the text title of each news stories. The extracted title words can be used to link or to navigate more related News contents on the WWW. In cooperation with facial and scene analysis and recognition techniques, OCR results can provide users with multimodality query for specific news stories. Some experimental results are presented and discussed for the system reliability and performance evaluation and comparison.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540288953</identifier><identifier>ISBN: 9783540288954</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540319863</identifier><identifier>EISBN: 3540319867</identifier><identifier>DOI: 10.1007/11552451_171</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>News Program ; News Story ; News Video ; Semantic Label ; Video Clip</subject><ispartof>Knowledge-Based Intelligent Information and Engineering Systems, 2005, p.1238-1244</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11552451_171$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11552451_171$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27923,38253,41440,42509</link.rule.ids></links><search><contributor>Howlett, Robert J.</contributor><contributor>Jain, Lakhmi C.</contributor><contributor>Khosla, Rajiv</contributor><creatorcontrib>Lai, P. S.</creatorcontrib><creatorcontrib>Cheng, S. S.</creatorcontrib><creatorcontrib>Sun, S. Y.</creatorcontrib><creatorcontrib>Huang, T. Y.</creatorcontrib><creatorcontrib>Su, J. M.</creatorcontrib><creatorcontrib>Xu, Y. Y.</creatorcontrib><creatorcontrib>Chen, Y. H.</creatorcontrib><creatorcontrib>Chuang, S. C.</creatorcontrib><creatorcontrib>Tseng, C. L.</creatorcontrib><creatorcontrib>Hsieh, C. L.</creatorcontrib><creatorcontrib>Lu, Y. L.</creatorcontrib><creatorcontrib>Shen, Y. C.</creatorcontrib><creatorcontrib>Chen, J. R.</creatorcontrib><creatorcontrib>Nie, J. B.</creatorcontrib><creatorcontrib>Tsai, F. P.</creatorcontrib><creatorcontrib>Huang, H. C.</creatorcontrib><creatorcontrib>Pao, H. T.</creatorcontrib><creatorcontrib>Fu, Hsin-Chia</creatorcontrib><title>Automated Information Mining on Multimedia TV News Archives</title><title>Knowledge-Based Intelligent Information and Engineering Systems</title><description>This paper addresses an integrated information mining techniques for multimedia TV-news archive. The utilizes techniques from the fields of acoustic, image, and video analysis, for information retrieval on news story title, newsman and scene identification. The goal is to construct a compact yet meaningful abstraction of broadcast news video, allowing users to browse through large amounts of data in a non-linear fashion with flexibility and efficiency. By using acoustic analysis, the system can classify video into news versus commercials, with 90% accuracy on a data set of 400 hours TV-news recorded off the air from July 2003 to August of 2004. By applying speaker identification and/or image detection techniques, each news stories can be segmented with an accuracy of 96%. On screen captions or subtitles are recognized by OCR techniques to produce the text title of each news stories. The extracted title words can be used to link or to navigate more related News contents on the WWW. In cooperation with facial and scene analysis and recognition techniques, OCR results can provide users with multimodality query for specific news stories. Some experimental results are presented and discussed for the system reliability and performance evaluation and comparison.</description><subject>News Program</subject><subject>News Story</subject><subject>News Video</subject><subject>Semantic Label</subject><subject>Video Clip</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540288953</isbn><isbn>9783540288954</isbn><isbn>9783540319863</isbn><isbn>3540319867</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkE9Lw0AUxNd_YK25-QFyFqLv5eXt7sNTKVULVS_Va0iyG422iWRT_fqm6MG5zMDA8GOUukC4QgBzjcicZow5GjxQkRhLnAGhWE2HaoIaMSHK5Eid7YvUWmE6VhMgSBMxGZ2qKIR3GEVoWfRE3cx2Q7ctBu_iZVt3_Ribro0fmrZpX-N92m2GZutdU8Trl_jRf4d41ldvzZcP5-qkLjbBR38-Vc-3i_X8Plk93S3ns1USUGBIrK7Ao_HGMrHV1lW14xG6EimADDoidoIiFjiVQkNaOp2lWIPlirikqbr83Q2f_Ujl-7zsuo-QI-T7W_L_t9AP38RNaw</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Lai, P. S.</creator><creator>Cheng, S. S.</creator><creator>Sun, S. Y.</creator><creator>Huang, T. Y.</creator><creator>Su, J. M.</creator><creator>Xu, Y. Y.</creator><creator>Chen, Y. H.</creator><creator>Chuang, S. C.</creator><creator>Tseng, C. L.</creator><creator>Hsieh, C. L.</creator><creator>Lu, Y. L.</creator><creator>Shen, Y. C.</creator><creator>Chen, J. R.</creator><creator>Nie, J. B.</creator><creator>Tsai, F. P.</creator><creator>Huang, H. C.</creator><creator>Pao, H. T.</creator><creator>Fu, Hsin-Chia</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2005</creationdate><title>Automated Information Mining on Multimedia TV News Archives</title><author>Lai, P. S. ; Cheng, S. S. ; Sun, S. Y. ; Huang, T. Y. ; Su, J. M. ; Xu, Y. Y. ; Chen, Y. H. ; Chuang, S. C. ; Tseng, C. L. ; Hsieh, C. L. ; Lu, Y. L. ; Shen, Y. C. ; Chen, J. R. ; Nie, J. B. ; Tsai, F. P. ; Huang, H. C. ; Pao, H. T. ; Fu, Hsin-Chia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s190t-86c0e17e78535868dcfd5319c99a0371d335d919980529a602bd6421f085c35b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>News Program</topic><topic>News Story</topic><topic>News Video</topic><topic>Semantic Label</topic><topic>Video Clip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, P. S.</creatorcontrib><creatorcontrib>Cheng, S. S.</creatorcontrib><creatorcontrib>Sun, S. Y.</creatorcontrib><creatorcontrib>Huang, T. Y.</creatorcontrib><creatorcontrib>Su, J. M.</creatorcontrib><creatorcontrib>Xu, Y. Y.</creatorcontrib><creatorcontrib>Chen, Y. H.</creatorcontrib><creatorcontrib>Chuang, S. C.</creatorcontrib><creatorcontrib>Tseng, C. L.</creatorcontrib><creatorcontrib>Hsieh, C. L.</creatorcontrib><creatorcontrib>Lu, Y. L.</creatorcontrib><creatorcontrib>Shen, Y. C.</creatorcontrib><creatorcontrib>Chen, J. R.</creatorcontrib><creatorcontrib>Nie, J. B.</creatorcontrib><creatorcontrib>Tsai, F. P.</creatorcontrib><creatorcontrib>Huang, H. C.</creatorcontrib><creatorcontrib>Pao, H. T.</creatorcontrib><creatorcontrib>Fu, Hsin-Chia</creatorcontrib><jtitle>Knowledge-Based Intelligent Information and Engineering Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, P. S.</au><au>Cheng, S. S.</au><au>Sun, S. Y.</au><au>Huang, T. Y.</au><au>Su, J. M.</au><au>Xu, Y. Y.</au><au>Chen, Y. H.</au><au>Chuang, S. C.</au><au>Tseng, C. L.</au><au>Hsieh, C. L.</au><au>Lu, Y. L.</au><au>Shen, Y. C.</au><au>Chen, J. R.</au><au>Nie, J. B.</au><au>Tsai, F. P.</au><au>Huang, H. C.</au><au>Pao, H. T.</au><au>Fu, Hsin-Chia</au><au>Howlett, Robert J.</au><au>Jain, Lakhmi C.</au><au>Khosla, Rajiv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Information Mining on Multimedia TV News Archives</atitle><jtitle>Knowledge-Based Intelligent Information and Engineering Systems</jtitle><date>2005</date><risdate>2005</risdate><spage>1238</spage><epage>1244</epage><pages>1238-1244</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540288953</isbn><isbn>9783540288954</isbn><eisbn>9783540319863</eisbn><eisbn>3540319867</eisbn><abstract>This paper addresses an integrated information mining techniques for multimedia TV-news archive. The utilizes techniques from the fields of acoustic, image, and video analysis, for information retrieval on news story title, newsman and scene identification. The goal is to construct a compact yet meaningful abstraction of broadcast news video, allowing users to browse through large amounts of data in a non-linear fashion with flexibility and efficiency. By using acoustic analysis, the system can classify video into news versus commercials, with 90% accuracy on a data set of 400 hours TV-news recorded off the air from July 2003 to August of 2004. By applying speaker identification and/or image detection techniques, each news stories can be segmented with an accuracy of 96%. On screen captions or subtitles are recognized by OCR techniques to produce the text title of each news stories. The extracted title words can be used to link or to navigate more related News contents on the WWW. In cooperation with facial and scene analysis and recognition techniques, OCR results can provide users with multimodality query for specific news stories. Some experimental results are presented and discussed for the system reliability and performance evaluation and comparison.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11552451_171</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Knowledge-Based Intelligent Information and Engineering Systems, 2005, p.1238-1244
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11552451_171
source Springer Books
subjects News Program
News Story
News Video
Semantic Label
Video Clip
title Automated Information Mining on Multimedia TV News Archives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Information%20Mining%20on%20Multimedia%20TV%20News%20Archives&rft.jtitle=Knowledge-Based%20Intelligent%20Information%20and%20Engineering%20Systems&rft.au=Lai,%20P.%20S.&rft.date=2005&rft.spage=1238&rft.epage=1244&rft.pages=1238-1244&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540288953&rft.isbn_list=9783540288954&rft_id=info:doi/10.1007/11552451_171&rft_dat=%3Cspringer%3Espringer_books_10_1007_11552451_171%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540319863&rft.eisbn_list=3540319867&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true