A TSK Fuzzy Inference Algorithm for Online Identification

This paper proposes an online self-organizing identification algorithm for TSK fuzzy model. The structure of TSK fuzzy model is identified using distance. Parameters of the piecewise linear function consisting consequent part are obtained using recursive version of combined learning method of global...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kim, Kyoungjung, Whang, Eun Ju, Park, Chang-Woo, Kim, Euntai, Park, Mignon
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue
container_start_page 179
container_title
container_volume
creator Kim, Kyoungjung
Whang, Eun Ju
Park, Chang-Woo
Kim, Euntai
Park, Mignon
description This paper proposes an online self-organizing identification algorithm for TSK fuzzy model. The structure of TSK fuzzy model is identified using distance. Parameters of the piecewise linear function consisting consequent part are obtained using recursive version of combined learning method of global and local learning. Both input and output spaces are considered in the proposed algorithm to identify the structure of the TSK fuzzy model. By processing clustering both in input and output space, outliers are excluded in clustering effectively. The proposed algorithm is non-sensitive to noise not by using data itself as cluster centers. The proposed algorithm can obtain a TSK fuzzy model through one pass. By using the proposed combined learning method, the estimated function can have high accuracy.
doi_str_mv 10.1007/11539506_23
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11539506_23</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11539506_23</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1043-8f962cc0090236221fce1893a3e7aafbcb17923a937e169a0deb52eafe99a4c23</originalsourceid><addsrcrecordid>eNpNkLtOw0AQRZeXhAmp-IFtKQwzO35NaUUELCKlINTWejMbDGaNbFOQrwcUCk5ziyPd4ih1hXCDAPktYkqcQlYbOlIXlCZAWBCkxyrCDDEmSvjkIExBaPhURUBgYs4TOlfzcXyFHwjzouBIcak3T496-bnff-kqeBkkONFlt-uHdnp5174f9Dp0bRBdbSVMrW-dndo-XKozb7tR5n87U8_Lu83iIV6t76tFuYpHhITiwnNmnANgMJQZg94JFkyWJLfWN67BnA1ZplwwYwtbaVIj1guzTZyhmbo-_I4fQxt2MtRN37-NNUL9G6T-F4S-AbtmTJQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A TSK Fuzzy Inference Algorithm for Online Identification</title><source>Springer Books</source><creator>Kim, Kyoungjung ; Whang, Eun Ju ; Park, Chang-Woo ; Kim, Euntai ; Park, Mignon</creator><contributor>Jin, Yaochu ; Wang, Lipo</contributor><creatorcontrib>Kim, Kyoungjung ; Whang, Eun Ju ; Park, Chang-Woo ; Kim, Euntai ; Park, Mignon ; Jin, Yaochu ; Wang, Lipo</creatorcontrib><description>This paper proposes an online self-organizing identification algorithm for TSK fuzzy model. The structure of TSK fuzzy model is identified using distance. Parameters of the piecewise linear function consisting consequent part are obtained using recursive version of combined learning method of global and local learning. Both input and output spaces are considered in the proposed algorithm to identify the structure of the TSK fuzzy model. By processing clustering both in input and output space, outliers are excluded in clustering effectively. The proposed algorithm is non-sensitive to noise not by using data itself as cluster centers. The proposed algorithm can obtain a TSK fuzzy model through one pass. By using the proposed combined learning method, the estimated function can have high accuracy.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540283129</identifier><identifier>ISBN: 9783540283126</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540318305</identifier><identifier>EISBN: 9783540318309</identifier><identifier>DOI: 10.1007/11539506_23</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cluster Center ; Fuzzy Neural Network ; Fuzzy Rule ; Fuzzy System ; Input Space</subject><ispartof>Fuzzy Systems and Knowledge Discovery, 2005, p.179-188</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11539506_23$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11539506_23$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>777,778,782,791,27908,38238,41425,42494</link.rule.ids></links><search><contributor>Jin, Yaochu</contributor><contributor>Wang, Lipo</contributor><creatorcontrib>Kim, Kyoungjung</creatorcontrib><creatorcontrib>Whang, Eun Ju</creatorcontrib><creatorcontrib>Park, Chang-Woo</creatorcontrib><creatorcontrib>Kim, Euntai</creatorcontrib><creatorcontrib>Park, Mignon</creatorcontrib><title>A TSK Fuzzy Inference Algorithm for Online Identification</title><title>Fuzzy Systems and Knowledge Discovery</title><description>This paper proposes an online self-organizing identification algorithm for TSK fuzzy model. The structure of TSK fuzzy model is identified using distance. Parameters of the piecewise linear function consisting consequent part are obtained using recursive version of combined learning method of global and local learning. Both input and output spaces are considered in the proposed algorithm to identify the structure of the TSK fuzzy model. By processing clustering both in input and output space, outliers are excluded in clustering effectively. The proposed algorithm is non-sensitive to noise not by using data itself as cluster centers. The proposed algorithm can obtain a TSK fuzzy model through one pass. By using the proposed combined learning method, the estimated function can have high accuracy.</description><subject>Cluster Center</subject><subject>Fuzzy Neural Network</subject><subject>Fuzzy Rule</subject><subject>Fuzzy System</subject><subject>Input Space</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540283129</isbn><isbn>9783540283126</isbn><isbn>3540318305</isbn><isbn>9783540318309</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNkLtOw0AQRZeXhAmp-IFtKQwzO35NaUUELCKlINTWejMbDGaNbFOQrwcUCk5ziyPd4ih1hXCDAPktYkqcQlYbOlIXlCZAWBCkxyrCDDEmSvjkIExBaPhURUBgYs4TOlfzcXyFHwjzouBIcak3T496-bnff-kqeBkkONFlt-uHdnp5174f9Dp0bRBdbSVMrW-dndo-XKozb7tR5n87U8_Lu83iIV6t76tFuYpHhITiwnNmnANgMJQZg94JFkyWJLfWN67BnA1ZplwwYwtbaVIj1guzTZyhmbo-_I4fQxt2MtRN37-NNUL9G6T-F4S-AbtmTJQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Kim, Kyoungjung</creator><creator>Whang, Eun Ju</creator><creator>Park, Chang-Woo</creator><creator>Kim, Euntai</creator><creator>Park, Mignon</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2005</creationdate><title>A TSK Fuzzy Inference Algorithm for Online Identification</title><author>Kim, Kyoungjung ; Whang, Eun Ju ; Park, Chang-Woo ; Kim, Euntai ; Park, Mignon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1043-8f962cc0090236221fce1893a3e7aafbcb17923a937e169a0deb52eafe99a4c23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cluster Center</topic><topic>Fuzzy Neural Network</topic><topic>Fuzzy Rule</topic><topic>Fuzzy System</topic><topic>Input Space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyoungjung</creatorcontrib><creatorcontrib>Whang, Eun Ju</creatorcontrib><creatorcontrib>Park, Chang-Woo</creatorcontrib><creatorcontrib>Kim, Euntai</creatorcontrib><creatorcontrib>Park, Mignon</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyoungjung</au><au>Whang, Eun Ju</au><au>Park, Chang-Woo</au><au>Kim, Euntai</au><au>Park, Mignon</au><au>Jin, Yaochu</au><au>Wang, Lipo</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A TSK Fuzzy Inference Algorithm for Online Identification</atitle><btitle>Fuzzy Systems and Knowledge Discovery</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>179</spage><epage>188</epage><pages>179-188</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540283129</isbn><isbn>9783540283126</isbn><eisbn>3540318305</eisbn><eisbn>9783540318309</eisbn><abstract>This paper proposes an online self-organizing identification algorithm for TSK fuzzy model. The structure of TSK fuzzy model is identified using distance. Parameters of the piecewise linear function consisting consequent part are obtained using recursive version of combined learning method of global and local learning. Both input and output spaces are considered in the proposed algorithm to identify the structure of the TSK fuzzy model. By processing clustering both in input and output space, outliers are excluded in clustering effectively. The proposed algorithm is non-sensitive to noise not by using data itself as cluster centers. The proposed algorithm can obtain a TSK fuzzy model through one pass. By using the proposed combined learning method, the estimated function can have high accuracy.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11539506_23</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Fuzzy Systems and Knowledge Discovery, 2005, p.179-188
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11539506_23
source Springer Books
subjects Cluster Center
Fuzzy Neural Network
Fuzzy Rule
Fuzzy System
Input Space
title A TSK Fuzzy Inference Algorithm for Online Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20TSK%20Fuzzy%20Inference%20Algorithm%20for%20Online%20Identification&rft.btitle=Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Kim,%20Kyoungjung&rft.date=2005&rft.spage=179&rft.epage=188&rft.pages=179-188&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540283129&rft.isbn_list=9783540283126&rft_id=info:doi/10.1007/11539506_23&rft_dat=%3Cspringer%3Espringer_books_10_1007_11539506_23%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540318305&rft.eisbn_list=9783540318309&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true