Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines
Evidence-based clinical guidelines require frequent updates due to research and technology advances. The quality of guideline updates can be improved if the knowledge underlying the guideline text is explicitly modelled using the so-called guideline patterns (GPs), mappings between a text fragment a...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | |
container_start_page | 191 |
container_title | |
container_volume | |
creator | Serban, Radu ten Teije, Annette van Harmelen, Frank Marcos, Mar Polo-Conde, Cristina |
description | Evidence-based clinical guidelines require frequent updates due to research and technology advances. The quality of guideline updates can be improved if the knowledge underlying the guideline text is explicitly modelled using the so-called guideline patterns (GPs), mappings between a text fragment and a formal representation of its corresponding medical knowledge.
Ontology-driven extraction of linguistic patterns is a method to automatically reconstruct the control knowledge captured in guidelines, which facilitates a more effective modelling and authoring of clinical guidelines. We illustrate by examples the use of a method for generating and searching for linguistic guideline patterns in the text of a guideline for treatment of breast cancer, and provide a general evaluation of usefulness of these patterns in the modelling of the guideline analyzed. |
doi_str_mv | 10.1007/11527770_28 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11527770_28</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11527770_28</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-c0ceaa7c84ffd6b8f0c8cca8e54a26b0c37a822b13289c4f64a3b7c070dcabe43</originalsourceid><addsrcrecordid>eNpNUE1LAzEUjF9grT35B3L1sPqSl91kj1JrFSoV1POSfU1KdNnIJhX9927Rg3OYgRkYhmHsQsCVANDXQpRSaw2NNAfsDEsFKIxR6pBNRCVEgajqIzartdlnchSBx2wCCLKotcJTNkvpDUagqLDECXte9zl2cftd3A7h0_V88ZUHSznEnkfPV6Hf7kLKgfiTzdkNfeI-DvwxblzXjSGfjxzIdny5C6MXepfO2Ym3XXKzP52y17vFy_y-WK2XD_ObVZGEqXNBQM5aTUZ5v6la44EMkTWuVFZWLRBqa6RsBUpTk_KVsthqAg0bsq1TOGWXv73pYxinuKFpY3xPjYBm_1bz7y38AcKaWR8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines</title><source>Springer Books</source><creator>Serban, Radu ; ten Teije, Annette ; van Harmelen, Frank ; Marcos, Mar ; Polo-Conde, Cristina</creator><contributor>Keravnou, Elpida T. ; Miksch, Silvia ; Hunter, Jim</contributor><creatorcontrib>Serban, Radu ; ten Teije, Annette ; van Harmelen, Frank ; Marcos, Mar ; Polo-Conde, Cristina ; Keravnou, Elpida T. ; Miksch, Silvia ; Hunter, Jim</creatorcontrib><description>Evidence-based clinical guidelines require frequent updates due to research and technology advances. The quality of guideline updates can be improved if the knowledge underlying the guideline text is explicitly modelled using the so-called guideline patterns (GPs), mappings between a text fragment and a formal representation of its corresponding medical knowledge.
Ontology-driven extraction of linguistic patterns is a method to automatically reconstruct the control knowledge captured in guidelines, which facilitates a more effective modelling and authoring of clinical guidelines. We illustrate by examples the use of a method for generating and searching for linguistic guideline patterns in the text of a guideline for treatment of breast cancer, and provide a general evaluation of usefulness of these patterns in the modelling of the guideline analyzed.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540278313</identifier><identifier>ISBN: 3540278311</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540318844</identifier><identifier>EISBN: 9783540318842</identifier><identifier>DOI: 10.1007/11527770_28</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Medical Concept ; Pattern Detection ; Pattern Instance ; Semantic Relation ; Text Fragment</subject><ispartof>Artificial Intelligence in Medicine, 2005, p.191-200</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11527770_28$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11527770_28$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Keravnou, Elpida T.</contributor><contributor>Miksch, Silvia</contributor><contributor>Hunter, Jim</contributor><creatorcontrib>Serban, Radu</creatorcontrib><creatorcontrib>ten Teije, Annette</creatorcontrib><creatorcontrib>van Harmelen, Frank</creatorcontrib><creatorcontrib>Marcos, Mar</creatorcontrib><creatorcontrib>Polo-Conde, Cristina</creatorcontrib><title>Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines</title><title>Artificial Intelligence in Medicine</title><description>Evidence-based clinical guidelines require frequent updates due to research and technology advances. The quality of guideline updates can be improved if the knowledge underlying the guideline text is explicitly modelled using the so-called guideline patterns (GPs), mappings between a text fragment and a formal representation of its corresponding medical knowledge.
Ontology-driven extraction of linguistic patterns is a method to automatically reconstruct the control knowledge captured in guidelines, which facilitates a more effective modelling and authoring of clinical guidelines. We illustrate by examples the use of a method for generating and searching for linguistic guideline patterns in the text of a guideline for treatment of breast cancer, and provide a general evaluation of usefulness of these patterns in the modelling of the guideline analyzed.</description><subject>Medical Concept</subject><subject>Pattern Detection</subject><subject>Pattern Instance</subject><subject>Semantic Relation</subject><subject>Text Fragment</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540278313</isbn><isbn>3540278311</isbn><isbn>3540318844</isbn><isbn>9783540318842</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNUE1LAzEUjF9grT35B3L1sPqSl91kj1JrFSoV1POSfU1KdNnIJhX9927Rg3OYgRkYhmHsQsCVANDXQpRSaw2NNAfsDEsFKIxR6pBNRCVEgajqIzartdlnchSBx2wCCLKotcJTNkvpDUagqLDECXte9zl2cftd3A7h0_V88ZUHSznEnkfPV6Hf7kLKgfiTzdkNfeI-DvwxblzXjSGfjxzIdny5C6MXepfO2Ym3XXKzP52y17vFy_y-WK2XD_ObVZGEqXNBQM5aTUZ5v6la44EMkTWuVFZWLRBqa6RsBUpTk_KVsthqAg0bsq1TOGWXv73pYxinuKFpY3xPjYBm_1bz7y38AcKaWR8</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Serban, Radu</creator><creator>ten Teije, Annette</creator><creator>van Harmelen, Frank</creator><creator>Marcos, Mar</creator><creator>Polo-Conde, Cristina</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2005</creationdate><title>Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines</title><author>Serban, Radu ; ten Teije, Annette ; van Harmelen, Frank ; Marcos, Mar ; Polo-Conde, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-c0ceaa7c84ffd6b8f0c8cca8e54a26b0c37a822b13289c4f64a3b7c070dcabe43</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Medical Concept</topic><topic>Pattern Detection</topic><topic>Pattern Instance</topic><topic>Semantic Relation</topic><topic>Text Fragment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serban, Radu</creatorcontrib><creatorcontrib>ten Teije, Annette</creatorcontrib><creatorcontrib>van Harmelen, Frank</creatorcontrib><creatorcontrib>Marcos, Mar</creatorcontrib><creatorcontrib>Polo-Conde, Cristina</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serban, Radu</au><au>ten Teije, Annette</au><au>van Harmelen, Frank</au><au>Marcos, Mar</au><au>Polo-Conde, Cristina</au><au>Keravnou, Elpida T.</au><au>Miksch, Silvia</au><au>Hunter, Jim</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines</atitle><btitle>Artificial Intelligence in Medicine</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>191</spage><epage>200</epage><pages>191-200</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540278313</isbn><isbn>3540278311</isbn><eisbn>3540318844</eisbn><eisbn>9783540318842</eisbn><abstract>Evidence-based clinical guidelines require frequent updates due to research and technology advances. The quality of guideline updates can be improved if the knowledge underlying the guideline text is explicitly modelled using the so-called guideline patterns (GPs), mappings between a text fragment and a formal representation of its corresponding medical knowledge.
Ontology-driven extraction of linguistic patterns is a method to automatically reconstruct the control knowledge captured in guidelines, which facilitates a more effective modelling and authoring of clinical guidelines. We illustrate by examples the use of a method for generating and searching for linguistic guideline patterns in the text of a guideline for treatment of breast cancer, and provide a general evaluation of usefulness of these patterns in the modelling of the guideline analyzed.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11527770_28</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Artificial Intelligence in Medicine, 2005, p.191-200 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_11527770_28 |
source | Springer Books |
subjects | Medical Concept Pattern Detection Pattern Instance Semantic Relation Text Fragment |
title | Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Ontology-Driven%20Extraction%20of%20Linguistic%20Patterns%20for%20Modelling%20Clinical%20Guidelines&rft.btitle=Artificial%20Intelligence%20in%20Medicine&rft.au=Serban,%20Radu&rft.date=2005&rft.spage=191&rft.epage=200&rft.pages=191-200&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540278313&rft.isbn_list=3540278311&rft_id=info:doi/10.1007/11527770_28&rft_dat=%3Cspringer%3Espringer_books_10_1007_11527770_28%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540318844&rft.eisbn_list=9783540318842&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |