Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines

Evidence-based clinical guidelines require frequent updates due to research and technology advances. The quality of guideline updates can be improved if the knowledge underlying the guideline text is explicitly modelled using the so-called guideline patterns (GPs), mappings between a text fragment a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Serban, Radu, ten Teije, Annette, van Harmelen, Frank, Marcos, Mar, Polo-Conde, Cristina
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue
container_start_page 191
container_title
container_volume
creator Serban, Radu
ten Teije, Annette
van Harmelen, Frank
Marcos, Mar
Polo-Conde, Cristina
description Evidence-based clinical guidelines require frequent updates due to research and technology advances. The quality of guideline updates can be improved if the knowledge underlying the guideline text is explicitly modelled using the so-called guideline patterns (GPs), mappings between a text fragment and a formal representation of its corresponding medical knowledge. Ontology-driven extraction of linguistic patterns is a method to automatically reconstruct the control knowledge captured in guidelines, which facilitates a more effective modelling and authoring of clinical guidelines. We illustrate by examples the use of a method for generating and searching for linguistic guideline patterns in the text of a guideline for treatment of breast cancer, and provide a general evaluation of usefulness of these patterns in the modelling of the guideline analyzed.
doi_str_mv 10.1007/11527770_28
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11527770_28</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11527770_28</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-c0ceaa7c84ffd6b8f0c8cca8e54a26b0c37a822b13289c4f64a3b7c070dcabe43</originalsourceid><addsrcrecordid>eNpNUE1LAzEUjF9grT35B3L1sPqSl91kj1JrFSoV1POSfU1KdNnIJhX9927Rg3OYgRkYhmHsQsCVANDXQpRSaw2NNAfsDEsFKIxR6pBNRCVEgajqIzartdlnchSBx2wCCLKotcJTNkvpDUagqLDECXte9zl2cftd3A7h0_V88ZUHSznEnkfPV6Hf7kLKgfiTzdkNfeI-DvwxblzXjSGfjxzIdny5C6MXepfO2Ym3XXKzP52y17vFy_y-WK2XD_ObVZGEqXNBQM5aTUZ5v6la44EMkTWuVFZWLRBqa6RsBUpTk_KVsthqAg0bsq1TOGWXv73pYxinuKFpY3xPjYBm_1bz7y38AcKaWR8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines</title><source>Springer Books</source><creator>Serban, Radu ; ten Teije, Annette ; van Harmelen, Frank ; Marcos, Mar ; Polo-Conde, Cristina</creator><contributor>Keravnou, Elpida T. ; Miksch, Silvia ; Hunter, Jim</contributor><creatorcontrib>Serban, Radu ; ten Teije, Annette ; van Harmelen, Frank ; Marcos, Mar ; Polo-Conde, Cristina ; Keravnou, Elpida T. ; Miksch, Silvia ; Hunter, Jim</creatorcontrib><description>Evidence-based clinical guidelines require frequent updates due to research and technology advances. The quality of guideline updates can be improved if the knowledge underlying the guideline text is explicitly modelled using the so-called guideline patterns (GPs), mappings between a text fragment and a formal representation of its corresponding medical knowledge. Ontology-driven extraction of linguistic patterns is a method to automatically reconstruct the control knowledge captured in guidelines, which facilitates a more effective modelling and authoring of clinical guidelines. We illustrate by examples the use of a method for generating and searching for linguistic guideline patterns in the text of a guideline for treatment of breast cancer, and provide a general evaluation of usefulness of these patterns in the modelling of the guideline analyzed.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540278313</identifier><identifier>ISBN: 3540278311</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540318844</identifier><identifier>EISBN: 9783540318842</identifier><identifier>DOI: 10.1007/11527770_28</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Medical Concept ; Pattern Detection ; Pattern Instance ; Semantic Relation ; Text Fragment</subject><ispartof>Artificial Intelligence in Medicine, 2005, p.191-200</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11527770_28$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11527770_28$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Keravnou, Elpida T.</contributor><contributor>Miksch, Silvia</contributor><contributor>Hunter, Jim</contributor><creatorcontrib>Serban, Radu</creatorcontrib><creatorcontrib>ten Teije, Annette</creatorcontrib><creatorcontrib>van Harmelen, Frank</creatorcontrib><creatorcontrib>Marcos, Mar</creatorcontrib><creatorcontrib>Polo-Conde, Cristina</creatorcontrib><title>Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines</title><title>Artificial Intelligence in Medicine</title><description>Evidence-based clinical guidelines require frequent updates due to research and technology advances. The quality of guideline updates can be improved if the knowledge underlying the guideline text is explicitly modelled using the so-called guideline patterns (GPs), mappings between a text fragment and a formal representation of its corresponding medical knowledge. Ontology-driven extraction of linguistic patterns is a method to automatically reconstruct the control knowledge captured in guidelines, which facilitates a more effective modelling and authoring of clinical guidelines. We illustrate by examples the use of a method for generating and searching for linguistic guideline patterns in the text of a guideline for treatment of breast cancer, and provide a general evaluation of usefulness of these patterns in the modelling of the guideline analyzed.</description><subject>Medical Concept</subject><subject>Pattern Detection</subject><subject>Pattern Instance</subject><subject>Semantic Relation</subject><subject>Text Fragment</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540278313</isbn><isbn>3540278311</isbn><isbn>3540318844</isbn><isbn>9783540318842</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNUE1LAzEUjF9grT35B3L1sPqSl91kj1JrFSoV1POSfU1KdNnIJhX9927Rg3OYgRkYhmHsQsCVANDXQpRSaw2NNAfsDEsFKIxR6pBNRCVEgajqIzartdlnchSBx2wCCLKotcJTNkvpDUagqLDECXte9zl2cftd3A7h0_V88ZUHSznEnkfPV6Hf7kLKgfiTzdkNfeI-DvwxblzXjSGfjxzIdny5C6MXepfO2Ym3XXKzP52y17vFy_y-WK2XD_ObVZGEqXNBQM5aTUZ5v6la44EMkTWuVFZWLRBqa6RsBUpTk_KVsthqAg0bsq1TOGWXv73pYxinuKFpY3xPjYBm_1bz7y38AcKaWR8</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Serban, Radu</creator><creator>ten Teije, Annette</creator><creator>van Harmelen, Frank</creator><creator>Marcos, Mar</creator><creator>Polo-Conde, Cristina</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2005</creationdate><title>Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines</title><author>Serban, Radu ; ten Teije, Annette ; van Harmelen, Frank ; Marcos, Mar ; Polo-Conde, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-c0ceaa7c84ffd6b8f0c8cca8e54a26b0c37a822b13289c4f64a3b7c070dcabe43</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Medical Concept</topic><topic>Pattern Detection</topic><topic>Pattern Instance</topic><topic>Semantic Relation</topic><topic>Text Fragment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serban, Radu</creatorcontrib><creatorcontrib>ten Teije, Annette</creatorcontrib><creatorcontrib>van Harmelen, Frank</creatorcontrib><creatorcontrib>Marcos, Mar</creatorcontrib><creatorcontrib>Polo-Conde, Cristina</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serban, Radu</au><au>ten Teije, Annette</au><au>van Harmelen, Frank</au><au>Marcos, Mar</au><au>Polo-Conde, Cristina</au><au>Keravnou, Elpida T.</au><au>Miksch, Silvia</au><au>Hunter, Jim</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines</atitle><btitle>Artificial Intelligence in Medicine</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>191</spage><epage>200</epage><pages>191-200</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540278313</isbn><isbn>3540278311</isbn><eisbn>3540318844</eisbn><eisbn>9783540318842</eisbn><abstract>Evidence-based clinical guidelines require frequent updates due to research and technology advances. The quality of guideline updates can be improved if the knowledge underlying the guideline text is explicitly modelled using the so-called guideline patterns (GPs), mappings between a text fragment and a formal representation of its corresponding medical knowledge. Ontology-driven extraction of linguistic patterns is a method to automatically reconstruct the control knowledge captured in guidelines, which facilitates a more effective modelling and authoring of clinical guidelines. We illustrate by examples the use of a method for generating and searching for linguistic guideline patterns in the text of a guideline for treatment of breast cancer, and provide a general evaluation of usefulness of these patterns in the modelling of the guideline analyzed.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11527770_28</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Intelligence in Medicine, 2005, p.191-200
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11527770_28
source Springer Books
subjects Medical Concept
Pattern Detection
Pattern Instance
Semantic Relation
Text Fragment
title Ontology-Driven Extraction of Linguistic Patterns for Modelling Clinical Guidelines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Ontology-Driven%20Extraction%20of%20Linguistic%20Patterns%20for%20Modelling%20Clinical%20Guidelines&rft.btitle=Artificial%20Intelligence%20in%20Medicine&rft.au=Serban,%20Radu&rft.date=2005&rft.spage=191&rft.epage=200&rft.pages=191-200&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540278313&rft.isbn_list=3540278311&rft_id=info:doi/10.1007/11527770_28&rft_dat=%3Cspringer%3Espringer_books_10_1007_11527770_28%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540318844&rft.eisbn_list=9783540318842&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true