Glial Calcium Signalling in Alzheimer’s Disease
The most accredited (and fashionable) hypothesis of the pathogenesis of Alzheimer Disease (AD) sees accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) as a leading mechanism of neurotoxicity. How β-amyloid triggers the neurodegenerative disorder is at present unclea...
Gespeichert in:
Veröffentlicht in: | Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167 Biochemistry and Pharmacology, Vol. 167, 2014-01, Vol.167, p.45-65 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | |
container_start_page | 45 |
container_title | Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167 |
container_volume | 167 |
creator | Lim, Dmitry Ronco, Virginia Grolla, Ambra A. Verkhratsky, Alexei Genazzani, Armando A. |
description | The most accredited (and fashionable) hypothesis of the pathogenesis of Alzheimer Disease (AD) sees accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) as a leading mechanism of neurotoxicity. How β-amyloid triggers the neurodegenerative disorder is at present unclear, but growing evidence suggests that a deregulation of Ca2+ homeostasis and deficient Ca2+ signalling may represent a fundamental pathogenic factor. Given that symptoms of AD are most likely linked to synaptic dysfunction (at the early stages) followed by neuronal loss (at later and terminal phases of the disease), the effects of β-amyloid have been mainly studied in neurones. Yet, it must be acknowledged that neuroglial cells, including astrocytes, contribute to pathological progression of most (if not all) neurological diseases. Here, we review the literature pertaining to changes in Ca2+ signalling in astrocytes exposed to exogenous β-amyloid or in astrocytes from transgenic Alzheimer disease animals models, characterized by endogenous β-amyloidosis. Accumulated experimental data indicate deregulation of Ca2+ homeostasis and signalling in astrocytes in AD, which should be given full pathogenetic consideration. Further studies are warranted to comprehend the role of deficient astroglial Ca2+ signalling in the disease progression. |
doi_str_mv | 10.1007/112_2014_19 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_sprin</sourceid><recordid>TN_cdi_springer_books_10_1007_112_2014_19</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24935225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-bc43690473024e906b4351bc13e6cfc6c41d119dcfca978b7b7b3f317153d4ca3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQNC_RBz1xR7lyCOx6HTs-VgEKUiUOwNlyHLcYkrSK6QFO_Aa_x5cQVCqhPcxKMxrNDGOnCBcIoC4RueGAwqDeYxOtciLUiJoj32dDlKjSTOXygI12BMhDNgQCSgUXMGCjGF8AOFc8P2YDLjRlnGdDhrM62DopbO3CpkkewrK1dR3aZRLaZFp_PPvQ-O778ysmVyF6G_0JO1rYOvrJH47Z0831Y3Gbzu9nd8V0njqeq7e0dIKkBqEIuPAaZCkow9IheekWTjqBVR-06n_bFypVf7QgVJhRJZylMTvb-q43ZeMrs-5CY7t3s8veC863gthT7dJ3plytXqNBML-jmX-j0Q90TFZW</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glial Calcium Signalling in Alzheimer’s Disease</title><source>MEDLINE</source><source>Springer Books</source><creator>Lim, Dmitry ; Ronco, Virginia ; Grolla, Ambra A. ; Verkhratsky, Alexei ; Genazzani, Armando A.</creator><contributor>Jahn, Reinhard ; Offermanns, Stefan ; Gudermann, Thomas ; Lill, Roland ; Nilius, Bernd ; Petersen, Ole H.</contributor><creatorcontrib>Lim, Dmitry ; Ronco, Virginia ; Grolla, Ambra A. ; Verkhratsky, Alexei ; Genazzani, Armando A. ; Jahn, Reinhard ; Offermanns, Stefan ; Gudermann, Thomas ; Lill, Roland ; Nilius, Bernd ; Petersen, Ole H.</creatorcontrib><description>The most accredited (and fashionable) hypothesis of the pathogenesis of Alzheimer Disease (AD) sees accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) as a leading mechanism of neurotoxicity. How β-amyloid triggers the neurodegenerative disorder is at present unclear, but growing evidence suggests that a deregulation of Ca2+ homeostasis and deficient Ca2+ signalling may represent a fundamental pathogenic factor. Given that symptoms of AD are most likely linked to synaptic dysfunction (at the early stages) followed by neuronal loss (at later and terminal phases of the disease), the effects of β-amyloid have been mainly studied in neurones. Yet, it must be acknowledged that neuroglial cells, including astrocytes, contribute to pathological progression of most (if not all) neurological diseases. Here, we review the literature pertaining to changes in Ca2+ signalling in astrocytes exposed to exogenous β-amyloid or in astrocytes from transgenic Alzheimer disease animals models, characterized by endogenous β-amyloidosis. Accumulated experimental data indicate deregulation of Ca2+ homeostasis and signalling in astrocytes in AD, which should be given full pathogenetic consideration. Further studies are warranted to comprehend the role of deficient astroglial Ca2+ signalling in the disease progression.</description><identifier>ISSN: 0303-4240</identifier><identifier>ISBN: 3319119206</identifier><identifier>ISBN: 9783319119205</identifier><identifier>EISSN: 1617-5786</identifier><identifier>EISBN: 9783319119212</identifier><identifier>EISBN: 3319119214</identifier><identifier>DOI: 10.1007/112_2014_19</identifier><identifier>PMID: 24935225</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alzheimer Disease - metabolism ; Alzheimer’s disease ; Amyloid beta-Peptides - physiology ; Animals ; Astrocyte ; Calcium Signaling ; Calcium signalling ; Glutamate receptors ; Humans ; InsP ; Neuroglia ; Neuroglia - metabolism ; receptors</subject><ispartof>Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167, 2014-01, Vol.167, p.45-65</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-bc43690473024e906b4351bc13e6cfc6c41d119dcfca978b7b7b3f317153d4ca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/112_2014_19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/112_2014_19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24935225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jahn, Reinhard</contributor><contributor>Offermanns, Stefan</contributor><contributor>Gudermann, Thomas</contributor><contributor>Lill, Roland</contributor><contributor>Nilius, Bernd</contributor><contributor>Petersen, Ole H.</contributor><creatorcontrib>Lim, Dmitry</creatorcontrib><creatorcontrib>Ronco, Virginia</creatorcontrib><creatorcontrib>Grolla, Ambra A.</creatorcontrib><creatorcontrib>Verkhratsky, Alexei</creatorcontrib><creatorcontrib>Genazzani, Armando A.</creatorcontrib><title>Glial Calcium Signalling in Alzheimer’s Disease</title><title>Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167</title><addtitle>Rev Physiol Biochem Pharmacol</addtitle><description>The most accredited (and fashionable) hypothesis of the pathogenesis of Alzheimer Disease (AD) sees accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) as a leading mechanism of neurotoxicity. How β-amyloid triggers the neurodegenerative disorder is at present unclear, but growing evidence suggests that a deregulation of Ca2+ homeostasis and deficient Ca2+ signalling may represent a fundamental pathogenic factor. Given that symptoms of AD are most likely linked to synaptic dysfunction (at the early stages) followed by neuronal loss (at later and terminal phases of the disease), the effects of β-amyloid have been mainly studied in neurones. Yet, it must be acknowledged that neuroglial cells, including astrocytes, contribute to pathological progression of most (if not all) neurological diseases. Here, we review the literature pertaining to changes in Ca2+ signalling in astrocytes exposed to exogenous β-amyloid or in astrocytes from transgenic Alzheimer disease animals models, characterized by endogenous β-amyloidosis. Accumulated experimental data indicate deregulation of Ca2+ homeostasis and signalling in astrocytes in AD, which should be given full pathogenetic consideration. Further studies are warranted to comprehend the role of deficient astroglial Ca2+ signalling in the disease progression.</description><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer’s disease</subject><subject>Amyloid beta-Peptides - physiology</subject><subject>Animals</subject><subject>Astrocyte</subject><subject>Calcium Signaling</subject><subject>Calcium signalling</subject><subject>Glutamate receptors</subject><subject>Humans</subject><subject>InsP</subject><subject>Neuroglia</subject><subject>Neuroglia - metabolism</subject><subject>receptors</subject><issn>0303-4240</issn><issn>1617-5786</issn><isbn>3319119206</isbn><isbn>9783319119205</isbn><isbn>9783319119212</isbn><isbn>3319119214</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNUMtOwzAQNC_RBz1xR7lyCOx6HTs-VgEKUiUOwNlyHLcYkrSK6QFO_Aa_x5cQVCqhPcxKMxrNDGOnCBcIoC4RueGAwqDeYxOtciLUiJoj32dDlKjSTOXygI12BMhDNgQCSgUXMGCjGF8AOFc8P2YDLjRlnGdDhrM62DopbO3CpkkewrK1dR3aZRLaZFp_PPvQ-O778ysmVyF6G_0JO1rYOvrJH47Z0831Y3Gbzu9nd8V0njqeq7e0dIKkBqEIuPAaZCkow9IheekWTjqBVR-06n_bFypVf7QgVJhRJZylMTvb-q43ZeMrs-5CY7t3s8veC863gthT7dJ3plytXqNBML-jmX-j0Q90TFZW</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Lim, Dmitry</creator><creator>Ronco, Virginia</creator><creator>Grolla, Ambra A.</creator><creator>Verkhratsky, Alexei</creator><creator>Genazzani, Armando A.</creator><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20140101</creationdate><title>Glial Calcium Signalling in Alzheimer’s Disease</title><author>Lim, Dmitry ; Ronco, Virginia ; Grolla, Ambra A. ; Verkhratsky, Alexei ; Genazzani, Armando A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-bc43690473024e906b4351bc13e6cfc6c41d119dcfca978b7b7b3f317153d4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer’s disease</topic><topic>Amyloid beta-Peptides - physiology</topic><topic>Animals</topic><topic>Astrocyte</topic><topic>Calcium Signaling</topic><topic>Calcium signalling</topic><topic>Glutamate receptors</topic><topic>Humans</topic><topic>InsP</topic><topic>Neuroglia</topic><topic>Neuroglia - metabolism</topic><topic>receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Dmitry</creatorcontrib><creatorcontrib>Ronco, Virginia</creatorcontrib><creatorcontrib>Grolla, Ambra A.</creatorcontrib><creatorcontrib>Verkhratsky, Alexei</creatorcontrib><creatorcontrib>Genazzani, Armando A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Dmitry</au><au>Ronco, Virginia</au><au>Grolla, Ambra A.</au><au>Verkhratsky, Alexei</au><au>Genazzani, Armando A.</au><au>Jahn, Reinhard</au><au>Offermanns, Stefan</au><au>Gudermann, Thomas</au><au>Lill, Roland</au><au>Nilius, Bernd</au><au>Petersen, Ole H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glial Calcium Signalling in Alzheimer’s Disease</atitle><jtitle>Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167</jtitle><addtitle>Rev Physiol Biochem Pharmacol</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>167</volume><spage>45</spage><epage>65</epage><pages>45-65</pages><issn>0303-4240</issn><eissn>1617-5786</eissn><isbn>3319119206</isbn><isbn>9783319119205</isbn><eisbn>9783319119212</eisbn><eisbn>3319119214</eisbn><abstract>The most accredited (and fashionable) hypothesis of the pathogenesis of Alzheimer Disease (AD) sees accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) as a leading mechanism of neurotoxicity. How β-amyloid triggers the neurodegenerative disorder is at present unclear, but growing evidence suggests that a deregulation of Ca2+ homeostasis and deficient Ca2+ signalling may represent a fundamental pathogenic factor. Given that symptoms of AD are most likely linked to synaptic dysfunction (at the early stages) followed by neuronal loss (at later and terminal phases of the disease), the effects of β-amyloid have been mainly studied in neurones. Yet, it must be acknowledged that neuroglial cells, including astrocytes, contribute to pathological progression of most (if not all) neurological diseases. Here, we review the literature pertaining to changes in Ca2+ signalling in astrocytes exposed to exogenous β-amyloid or in astrocytes from transgenic Alzheimer disease animals models, characterized by endogenous β-amyloidosis. Accumulated experimental data indicate deregulation of Ca2+ homeostasis and signalling in astrocytes in AD, which should be given full pathogenetic consideration. Further studies are warranted to comprehend the role of deficient astroglial Ca2+ signalling in the disease progression.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>24935225</pmid><doi>10.1007/112_2014_19</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-4240 |
ispartof | Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167, 2014-01, Vol.167, p.45-65 |
issn | 0303-4240 1617-5786 |
language | eng |
recordid | cdi_springer_books_10_1007_112_2014_19 |
source | MEDLINE; Springer Books |
subjects | Alzheimer Disease - metabolism Alzheimer’s disease Amyloid beta-Peptides - physiology Animals Astrocyte Calcium Signaling Calcium signalling Glutamate receptors Humans InsP Neuroglia Neuroglia - metabolism receptors |
title | Glial Calcium Signalling in Alzheimer’s Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glial%20Calcium%20Signalling%20in%20Alzheimer%E2%80%99s%20Disease&rft.jtitle=Reviews%20of%20Physiology,%20Biochemistry%20and%20Pharmacology,%20Vol.%20167&rft.au=Lim,%20Dmitry&rft.date=2014-01-01&rft.volume=167&rft.spage=45&rft.epage=65&rft.pages=45-65&rft.issn=0303-4240&rft.eissn=1617-5786&rft.isbn=3319119206&rft.isbn_list=9783319119205&rft_id=info:doi/10.1007/112_2014_19&rft_dat=%3Cpubmed_sprin%3E24935225%3C/pubmed_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783319119212&rft.eisbn_list=3319119214&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24935225&rfr_iscdi=true |