Glial Calcium Signalling in Alzheimer’s Disease

The most accredited (and fashionable) hypothesis of the pathogenesis of Alzheimer Disease (AD) sees accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) as a leading mechanism of neurotoxicity. How β-amyloid triggers the neurodegenerative disorder is at present unclea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167 Biochemistry and Pharmacology, Vol. 167, 2014-01, Vol.167, p.45-65
Hauptverfasser: Lim, Dmitry, Ronco, Virginia, Grolla, Ambra A., Verkhratsky, Alexei, Genazzani, Armando A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue
container_start_page 45
container_title Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167
container_volume 167
creator Lim, Dmitry
Ronco, Virginia
Grolla, Ambra A.
Verkhratsky, Alexei
Genazzani, Armando A.
description The most accredited (and fashionable) hypothesis of the pathogenesis of Alzheimer Disease (AD) sees accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) as a leading mechanism of neurotoxicity. How β-amyloid triggers the neurodegenerative disorder is at present unclear, but growing evidence suggests that a deregulation of Ca2+ homeostasis and deficient Ca2+ signalling may represent a fundamental pathogenic factor. Given that symptoms of AD are most likely linked to synaptic dysfunction (at the early stages) followed by neuronal loss (at later and terminal phases of the disease), the effects of β-amyloid have been mainly studied in neurones. Yet, it must be acknowledged that neuroglial cells, including astrocytes, contribute to pathological progression of most (if not all) neurological diseases. Here, we review the literature pertaining to changes in Ca2+ signalling in astrocytes exposed to exogenous β-amyloid or in astrocytes from transgenic Alzheimer disease animals models, characterized by endogenous β-amyloidosis. Accumulated experimental data indicate deregulation of Ca2+ homeostasis and signalling in astrocytes in AD, which should be given full pathogenetic consideration. Further studies are warranted to comprehend the role of deficient astroglial Ca2+ signalling in the disease progression.
doi_str_mv 10.1007/112_2014_19
format Article
fullrecord <record><control><sourceid>pubmed_sprin</sourceid><recordid>TN_cdi_springer_books_10_1007_112_2014_19</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24935225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-bc43690473024e906b4351bc13e6cfc6c41d119dcfca978b7b7b3f317153d4ca3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQNC_RBz1xR7lyCOx6HTs-VgEKUiUOwNlyHLcYkrSK6QFO_Aa_x5cQVCqhPcxKMxrNDGOnCBcIoC4RueGAwqDeYxOtciLUiJoj32dDlKjSTOXygI12BMhDNgQCSgUXMGCjGF8AOFc8P2YDLjRlnGdDhrM62DopbO3CpkkewrK1dR3aZRLaZFp_PPvQ-O778ysmVyF6G_0JO1rYOvrJH47Z0831Y3Gbzu9nd8V0njqeq7e0dIKkBqEIuPAaZCkow9IheekWTjqBVR-06n_bFypVf7QgVJhRJZylMTvb-q43ZeMrs-5CY7t3s8veC863gthT7dJ3plytXqNBML-jmX-j0Q90TFZW</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glial Calcium Signalling in Alzheimer’s Disease</title><source>MEDLINE</source><source>Springer Books</source><creator>Lim, Dmitry ; Ronco, Virginia ; Grolla, Ambra A. ; Verkhratsky, Alexei ; Genazzani, Armando A.</creator><contributor>Jahn, Reinhard ; Offermanns, Stefan ; Gudermann, Thomas ; Lill, Roland ; Nilius, Bernd ; Petersen, Ole H.</contributor><creatorcontrib>Lim, Dmitry ; Ronco, Virginia ; Grolla, Ambra A. ; Verkhratsky, Alexei ; Genazzani, Armando A. ; Jahn, Reinhard ; Offermanns, Stefan ; Gudermann, Thomas ; Lill, Roland ; Nilius, Bernd ; Petersen, Ole H.</creatorcontrib><description>The most accredited (and fashionable) hypothesis of the pathogenesis of Alzheimer Disease (AD) sees accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) as a leading mechanism of neurotoxicity. How β-amyloid triggers the neurodegenerative disorder is at present unclear, but growing evidence suggests that a deregulation of Ca2+ homeostasis and deficient Ca2+ signalling may represent a fundamental pathogenic factor. Given that symptoms of AD are most likely linked to synaptic dysfunction (at the early stages) followed by neuronal loss (at later and terminal phases of the disease), the effects of β-amyloid have been mainly studied in neurones. Yet, it must be acknowledged that neuroglial cells, including astrocytes, contribute to pathological progression of most (if not all) neurological diseases. Here, we review the literature pertaining to changes in Ca2+ signalling in astrocytes exposed to exogenous β-amyloid or in astrocytes from transgenic Alzheimer disease animals models, characterized by endogenous β-amyloidosis. Accumulated experimental data indicate deregulation of Ca2+ homeostasis and signalling in astrocytes in AD, which should be given full pathogenetic consideration. Further studies are warranted to comprehend the role of deficient astroglial Ca2+ signalling in the disease progression.</description><identifier>ISSN: 0303-4240</identifier><identifier>ISBN: 3319119206</identifier><identifier>ISBN: 9783319119205</identifier><identifier>EISSN: 1617-5786</identifier><identifier>EISBN: 9783319119212</identifier><identifier>EISBN: 3319119214</identifier><identifier>DOI: 10.1007/112_2014_19</identifier><identifier>PMID: 24935225</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alzheimer Disease - metabolism ; Alzheimer’s disease ; Amyloid beta-Peptides - physiology ; Animals ; Astrocyte ; Calcium Signaling ; Calcium signalling ; Glutamate receptors ; Humans ; InsP ; Neuroglia ; Neuroglia - metabolism ; receptors</subject><ispartof>Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167, 2014-01, Vol.167, p.45-65</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-bc43690473024e906b4351bc13e6cfc6c41d119dcfca978b7b7b3f317153d4ca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/112_2014_19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/112_2014_19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24935225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jahn, Reinhard</contributor><contributor>Offermanns, Stefan</contributor><contributor>Gudermann, Thomas</contributor><contributor>Lill, Roland</contributor><contributor>Nilius, Bernd</contributor><contributor>Petersen, Ole H.</contributor><creatorcontrib>Lim, Dmitry</creatorcontrib><creatorcontrib>Ronco, Virginia</creatorcontrib><creatorcontrib>Grolla, Ambra A.</creatorcontrib><creatorcontrib>Verkhratsky, Alexei</creatorcontrib><creatorcontrib>Genazzani, Armando A.</creatorcontrib><title>Glial Calcium Signalling in Alzheimer’s Disease</title><title>Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167</title><addtitle>Rev Physiol Biochem Pharmacol</addtitle><description>The most accredited (and fashionable) hypothesis of the pathogenesis of Alzheimer Disease (AD) sees accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) as a leading mechanism of neurotoxicity. How β-amyloid triggers the neurodegenerative disorder is at present unclear, but growing evidence suggests that a deregulation of Ca2+ homeostasis and deficient Ca2+ signalling may represent a fundamental pathogenic factor. Given that symptoms of AD are most likely linked to synaptic dysfunction (at the early stages) followed by neuronal loss (at later and terminal phases of the disease), the effects of β-amyloid have been mainly studied in neurones. Yet, it must be acknowledged that neuroglial cells, including astrocytes, contribute to pathological progression of most (if not all) neurological diseases. Here, we review the literature pertaining to changes in Ca2+ signalling in astrocytes exposed to exogenous β-amyloid or in astrocytes from transgenic Alzheimer disease animals models, characterized by endogenous β-amyloidosis. Accumulated experimental data indicate deregulation of Ca2+ homeostasis and signalling in astrocytes in AD, which should be given full pathogenetic consideration. Further studies are warranted to comprehend the role of deficient astroglial Ca2+ signalling in the disease progression.</description><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer’s disease</subject><subject>Amyloid beta-Peptides - physiology</subject><subject>Animals</subject><subject>Astrocyte</subject><subject>Calcium Signaling</subject><subject>Calcium signalling</subject><subject>Glutamate receptors</subject><subject>Humans</subject><subject>InsP</subject><subject>Neuroglia</subject><subject>Neuroglia - metabolism</subject><subject>receptors</subject><issn>0303-4240</issn><issn>1617-5786</issn><isbn>3319119206</isbn><isbn>9783319119205</isbn><isbn>9783319119212</isbn><isbn>3319119214</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNUMtOwzAQNC_RBz1xR7lyCOx6HTs-VgEKUiUOwNlyHLcYkrSK6QFO_Aa_x5cQVCqhPcxKMxrNDGOnCBcIoC4RueGAwqDeYxOtciLUiJoj32dDlKjSTOXygI12BMhDNgQCSgUXMGCjGF8AOFc8P2YDLjRlnGdDhrM62DopbO3CpkkewrK1dR3aZRLaZFp_PPvQ-O778ysmVyF6G_0JO1rYOvrJH47Z0831Y3Gbzu9nd8V0njqeq7e0dIKkBqEIuPAaZCkow9IheekWTjqBVR-06n_bFypVf7QgVJhRJZylMTvb-q43ZeMrs-5CY7t3s8veC863gthT7dJ3plytXqNBML-jmX-j0Q90TFZW</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Lim, Dmitry</creator><creator>Ronco, Virginia</creator><creator>Grolla, Ambra A.</creator><creator>Verkhratsky, Alexei</creator><creator>Genazzani, Armando A.</creator><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20140101</creationdate><title>Glial Calcium Signalling in Alzheimer’s Disease</title><author>Lim, Dmitry ; Ronco, Virginia ; Grolla, Ambra A. ; Verkhratsky, Alexei ; Genazzani, Armando A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-bc43690473024e906b4351bc13e6cfc6c41d119dcfca978b7b7b3f317153d4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer’s disease</topic><topic>Amyloid beta-Peptides - physiology</topic><topic>Animals</topic><topic>Astrocyte</topic><topic>Calcium Signaling</topic><topic>Calcium signalling</topic><topic>Glutamate receptors</topic><topic>Humans</topic><topic>InsP</topic><topic>Neuroglia</topic><topic>Neuroglia - metabolism</topic><topic>receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Dmitry</creatorcontrib><creatorcontrib>Ronco, Virginia</creatorcontrib><creatorcontrib>Grolla, Ambra A.</creatorcontrib><creatorcontrib>Verkhratsky, Alexei</creatorcontrib><creatorcontrib>Genazzani, Armando A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Dmitry</au><au>Ronco, Virginia</au><au>Grolla, Ambra A.</au><au>Verkhratsky, Alexei</au><au>Genazzani, Armando A.</au><au>Jahn, Reinhard</au><au>Offermanns, Stefan</au><au>Gudermann, Thomas</au><au>Lill, Roland</au><au>Nilius, Bernd</au><au>Petersen, Ole H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glial Calcium Signalling in Alzheimer’s Disease</atitle><jtitle>Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167</jtitle><addtitle>Rev Physiol Biochem Pharmacol</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>167</volume><spage>45</spage><epage>65</epage><pages>45-65</pages><issn>0303-4240</issn><eissn>1617-5786</eissn><isbn>3319119206</isbn><isbn>9783319119205</isbn><eisbn>9783319119212</eisbn><eisbn>3319119214</eisbn><abstract>The most accredited (and fashionable) hypothesis of the pathogenesis of Alzheimer Disease (AD) sees accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) as a leading mechanism of neurotoxicity. How β-amyloid triggers the neurodegenerative disorder is at present unclear, but growing evidence suggests that a deregulation of Ca2+ homeostasis and deficient Ca2+ signalling may represent a fundamental pathogenic factor. Given that symptoms of AD are most likely linked to synaptic dysfunction (at the early stages) followed by neuronal loss (at later and terminal phases of the disease), the effects of β-amyloid have been mainly studied in neurones. Yet, it must be acknowledged that neuroglial cells, including astrocytes, contribute to pathological progression of most (if not all) neurological diseases. Here, we review the literature pertaining to changes in Ca2+ signalling in astrocytes exposed to exogenous β-amyloid or in astrocytes from transgenic Alzheimer disease animals models, characterized by endogenous β-amyloidosis. Accumulated experimental data indicate deregulation of Ca2+ homeostasis and signalling in astrocytes in AD, which should be given full pathogenetic consideration. Further studies are warranted to comprehend the role of deficient astroglial Ca2+ signalling in the disease progression.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>24935225</pmid><doi>10.1007/112_2014_19</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-4240
ispartof Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167, 2014-01, Vol.167, p.45-65
issn 0303-4240
1617-5786
language eng
recordid cdi_springer_books_10_1007_112_2014_19
source MEDLINE; Springer Books
subjects Alzheimer Disease - metabolism
Alzheimer’s disease
Amyloid beta-Peptides - physiology
Animals
Astrocyte
Calcium Signaling
Calcium signalling
Glutamate receptors
Humans
InsP
Neuroglia
Neuroglia - metabolism
receptors
title Glial Calcium Signalling in Alzheimer’s Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glial%20Calcium%20Signalling%20in%20Alzheimer%E2%80%99s%20Disease&rft.jtitle=Reviews%20of%20Physiology,%20Biochemistry%20and%20Pharmacology,%20Vol.%20167&rft.au=Lim,%20Dmitry&rft.date=2014-01-01&rft.volume=167&rft.spage=45&rft.epage=65&rft.pages=45-65&rft.issn=0303-4240&rft.eissn=1617-5786&rft.isbn=3319119206&rft.isbn_list=9783319119205&rft_id=info:doi/10.1007/112_2014_19&rft_dat=%3Cpubmed_sprin%3E24935225%3C/pubmed_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783319119212&rft.eisbn_list=3319119214&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24935225&rfr_iscdi=true