Advanced Fuzzy Clustering and Decision Tree Plug-Ins for DataEngineTM
Although a large variety of data analysis tools are available on the market today, none of them is perfect; they all have their strengths and weaknesses. In such a situation it is important that a user can enhance the capabilities of a data analysis tool by his or her own favourite methods in order...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | |
container_start_page | 188 |
container_title | |
container_volume | |
creator | Borgelt, Christian Timm, Heiko |
description | Although a large variety of data analysis tools are available on the market today, none of them is perfect; they all have their strengths and weaknesses. In such a situation it is important that a user can enhance the capabilities of a data analysis tool by his or her own favourite methods in order to compensate for shortcomings of the shipped version. However, only few commercial products offer such a possibility. A rare exception is DataEngineTM, which is provided with a well-documented interface for user-defined function blocks (plug-ins). In this paper we describe three plug-ins we implemented for this well-known tool: An advanced fuzzy clustering plug-in that extends the fuzzy c-means algorithm (which is a built-in feature of DataEngineTM) by other, more flexible algorithms, a decision tree classifier plug-in that overcomes the serious drawback that DataEngineTM lacks a native module for this highly important technique, and finally a naive Bayes classifier plug-in that makes available an old and time-tested statistical classification method. |
doi_str_mv | 10.1007/10720181_8 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_10720181_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_10720181_8</sourcerecordid><originalsourceid>FETCH-springer_books_10_1007_10720181_83</originalsourceid><addsrcrecordid>eNqVj7GKwkAURd-uChtXG79gSpvoe5nRyZSiES0Ei_TDrBlD1jCRjBH06zUgWFvd4lwOHIAR4YQQ5ZRQRkgx6fgLhkrGfCZQCEWSviGgOVHIuVAd6Ldg_uRSdSFAjlGopOA_0Pf-HxEjqaIAkkV2Ne5gM7Zu7vcbW5aNv9i6cDkzLmMreyh8UTmW1tayfdnk4dZ5dqxqtjIXk7i8cDbdDaB3NKW3w9f-wnidpMtN6M-tytb6r6pOXhPqtkG_G_gH1wchQEU4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Advanced Fuzzy Clustering and Decision Tree Plug-Ins for DataEngineTM</title><source>Springer Books</source><creator>Borgelt, Christian ; Timm, Heiko</creator><contributor>Nauck, Detlef D. ; Azarmi, Nader ; Azvine, Benham</contributor><creatorcontrib>Borgelt, Christian ; Timm, Heiko ; Nauck, Detlef D. ; Azarmi, Nader ; Azvine, Benham</creatorcontrib><description>Although a large variety of data analysis tools are available on the market today, none of them is perfect; they all have their strengths and weaknesses. In such a situation it is important that a user can enhance the capabilities of a data analysis tool by his or her own favourite methods in order to compensate for shortcomings of the shipped version. However, only few commercial products offer such a possibility. A rare exception is DataEngineTM, which is provided with a well-documented interface for user-defined function blocks (plug-ins). In this paper we describe three plug-ins we implemented for this well-known tool: An advanced fuzzy clustering plug-in that extends the fuzzy c-means algorithm (which is a built-in feature of DataEngineTM) by other, more flexible algorithms, a decision tree classifier plug-in that overcomes the serious drawback that DataEngineTM lacks a native module for this highly important technique, and finally a naive Bayes classifier plug-in that makes available an old and time-tested statistical classification method.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540678379</identifier><identifier>ISBN: 9783540678373</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540449171</identifier><identifier>EISBN: 3540449175</identifier><identifier>DOI: 10.1007/10720181_8</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bayesian Network ; Decision Tree ; Function Block ; Fuzzy Cluster ; Membership Degree</subject><ispartof>Intelligent Systems and Soft Computing, 2000, p.188-212</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/10720181_8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/10720181_8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Nauck, Detlef D.</contributor><contributor>Azarmi, Nader</contributor><contributor>Azvine, Benham</contributor><creatorcontrib>Borgelt, Christian</creatorcontrib><creatorcontrib>Timm, Heiko</creatorcontrib><title>Advanced Fuzzy Clustering and Decision Tree Plug-Ins for DataEngineTM</title><title>Intelligent Systems and Soft Computing</title><description>Although a large variety of data analysis tools are available on the market today, none of them is perfect; they all have their strengths and weaknesses. In such a situation it is important that a user can enhance the capabilities of a data analysis tool by his or her own favourite methods in order to compensate for shortcomings of the shipped version. However, only few commercial products offer such a possibility. A rare exception is DataEngineTM, which is provided with a well-documented interface for user-defined function blocks (plug-ins). In this paper we describe three plug-ins we implemented for this well-known tool: An advanced fuzzy clustering plug-in that extends the fuzzy c-means algorithm (which is a built-in feature of DataEngineTM) by other, more flexible algorithms, a decision tree classifier plug-in that overcomes the serious drawback that DataEngineTM lacks a native module for this highly important technique, and finally a naive Bayes classifier plug-in that makes available an old and time-tested statistical classification method.</description><subject>Bayesian Network</subject><subject>Decision Tree</subject><subject>Function Block</subject><subject>Fuzzy Cluster</subject><subject>Membership Degree</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540678379</isbn><isbn>9783540678373</isbn><isbn>9783540449171</isbn><isbn>3540449175</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2000</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNqVj7GKwkAURd-uChtXG79gSpvoe5nRyZSiES0Ei_TDrBlD1jCRjBH06zUgWFvd4lwOHIAR4YQQ5ZRQRkgx6fgLhkrGfCZQCEWSviGgOVHIuVAd6Ldg_uRSdSFAjlGopOA_0Pf-HxEjqaIAkkV2Ne5gM7Zu7vcbW5aNv9i6cDkzLmMreyh8UTmW1tayfdnk4dZ5dqxqtjIXk7i8cDbdDaB3NKW3w9f-wnidpMtN6M-tytb6r6pOXhPqtkG_G_gH1wchQEU4</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Borgelt, Christian</creator><creator>Timm, Heiko</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2000</creationdate><title>Advanced Fuzzy Clustering and Decision Tree Plug-Ins for DataEngineTM</title><author>Borgelt, Christian ; Timm, Heiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-springer_books_10_1007_10720181_83</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bayesian Network</topic><topic>Decision Tree</topic><topic>Function Block</topic><topic>Fuzzy Cluster</topic><topic>Membership Degree</topic><toplevel>online_resources</toplevel><creatorcontrib>Borgelt, Christian</creatorcontrib><creatorcontrib>Timm, Heiko</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgelt, Christian</au><au>Timm, Heiko</au><au>Nauck, Detlef D.</au><au>Azarmi, Nader</au><au>Azvine, Benham</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Advanced Fuzzy Clustering and Decision Tree Plug-Ins for DataEngineTM</atitle><btitle>Intelligent Systems and Soft Computing</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2000</date><risdate>2000</risdate><spage>188</spage><epage>212</epage><pages>188-212</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540678379</isbn><isbn>9783540678373</isbn><eisbn>9783540449171</eisbn><eisbn>3540449175</eisbn><abstract>Although a large variety of data analysis tools are available on the market today, none of them is perfect; they all have their strengths and weaknesses. In such a situation it is important that a user can enhance the capabilities of a data analysis tool by his or her own favourite methods in order to compensate for shortcomings of the shipped version. However, only few commercial products offer such a possibility. A rare exception is DataEngineTM, which is provided with a well-documented interface for user-defined function blocks (plug-ins). In this paper we describe three plug-ins we implemented for this well-known tool: An advanced fuzzy clustering plug-in that extends the fuzzy c-means algorithm (which is a built-in feature of DataEngineTM) by other, more flexible algorithms, a decision tree classifier plug-in that overcomes the serious drawback that DataEngineTM lacks a native module for this highly important technique, and finally a naive Bayes classifier plug-in that makes available an old and time-tested statistical classification method.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/10720181_8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Intelligent Systems and Soft Computing, 2000, p.188-212 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_10720181_8 |
source | Springer Books |
subjects | Bayesian Network Decision Tree Function Block Fuzzy Cluster Membership Degree |
title | Advanced Fuzzy Clustering and Decision Tree Plug-Ins for DataEngineTM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Advanced%20Fuzzy%20Clustering%20and%20Decision%20Tree%20Plug-Ins%20for%20DataEngineTM&rft.btitle=Intelligent%20Systems%20and%20Soft%20Computing&rft.au=Borgelt,%20Christian&rft.date=2000&rft.spage=188&rft.epage=212&rft.pages=188-212&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540678379&rft.isbn_list=9783540678373&rft_id=info:doi/10.1007/10720181_8&rft_dat=%3Cspringer%3Espringer_books_10_1007_10720181_8%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540449171&rft.eisbn_list=3540449175&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |