Introduction to Responsible AI - Implement Ethical AI Using Python

Learn and implement responsible AI models using Python. This book will teach you how to balance ethical challenges with opportunities in artificial intelligence. The book starts with an introduction to the fundamentals of AI, with special emphasis given to the key principles of responsible AI. The a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Avinash Manure, Shaleen Bengani, Saravanan S
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Avinash Manure, Shaleen Bengani, Saravanan S
description Learn and implement responsible AI models using Python. This book will teach you how to balance ethical challenges with opportunities in artificial intelligence. The book starts with an introduction to the fundamentals of AI, with special emphasis given to the key principles of responsible AI. The authors then walk you through the critical issues of detecting and mitigating bias, making AI decisions understandable, preserving privacy, ensuring security, and designing robust models. Along the way, you'll gain an overview of tools, techniques, and code examples to implement the key principles you learn in real-world scenarios. The book concludes with a chapter devoted to fostering a deeper understanding of responsible AI's profound implications for the future. Each chapter offers a hands-on approach, enriched with practical insights and code snippets, enabling you to translate ethical considerations into actionable solutions. What You Will Learn Understand the principles of responsible AI and their importance in today's digital world Master techniques to detect and mitigate bias in AI Explore methods and tools for achieving transparency and explainability Discover best practices for privacy preservation and security in AI Gain insights into designing robust and reliable AI models Who This Book Is For AI practitioners, data scientists, machine learning engineers, researchers, policymakers, and students interested in the ethical aspects of AI
doi_str_mv 10.1007/978-1-4842-9982-1
format Book
fullrecord <record><control><sourceid>proquest_skill</sourceid><recordid>TN_cdi_skillsoft_books24x7_bks000166819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC30965599</sourcerecordid><originalsourceid>FETCH-LOGICAL-a20191-e834e5f8bbdd7a18120f684c3712e3f2208a0ef5423d5d4d0f7383ebee9fe74f3</originalsourceid><addsrcrecordid>eNplkEFv1DAQhYNQEbD0ByBxyAEEPYR6bGdjH7erbYlUCVQBV8vZjLsh3jiN3aX998SbiB56sp79veeZlyTvgXwFQopzWYgMMi44zaQUNIMXyVuIMqr85ZOA4lUUQHLJOaGvk1Pv_xBCqOQghHiTXJRdGFx9vw2N69Lg0hv0vet8U1lMV2WapeW-t7jHLqSbsGu22sbrX77pbtMfj2HnunfJidHW4-l8LpLfl5uf62_Z9fercr26zjQlICFDwTjmRlRVXRcaBFBiloJvWQEUmaGUCE3Q5JyyOq95TUzBBMMKURosuGGL5PMU7NvGWu9MUJVzraf8oVBV68e9YLkUIEfybCK1b_Gv3zkbvDpYPOJqbO9_WTCy53NqP4xL4TCFKiAqdh1pBSryKhpUdHycHdrooZn5A30W_GXC-sHd3aMP6vj_dqxy0FZtLtaMyGWeyzjvhxnFweKtmyN5Dnkx1rFIPk3PbecOaNU46F4Pj0dKtX15syrLzeqK_QPhlprp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC30965599</pqid></control><display><type>book</type><title>Introduction to Responsible AI - Implement Ethical AI Using Python</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Avinash Manure, Shaleen Bengani, Saravanan S</creator><creatorcontrib>Avinash Manure, Shaleen Bengani, Saravanan S</creatorcontrib><description>Learn and implement responsible AI models using Python. This book will teach you how to balance ethical challenges with opportunities in artificial intelligence. The book starts with an introduction to the fundamentals of AI, with special emphasis given to the key principles of responsible AI. The authors then walk you through the critical issues of detecting and mitigating bias, making AI decisions understandable, preserving privacy, ensuring security, and designing robust models. Along the way, you'll gain an overview of tools, techniques, and code examples to implement the key principles you learn in real-world scenarios. The book concludes with a chapter devoted to fostering a deeper understanding of responsible AI's profound implications for the future. Each chapter offers a hands-on approach, enriched with practical insights and code snippets, enabling you to translate ethical considerations into actionable solutions. What You Will Learn Understand the principles of responsible AI and their importance in today's digital world Master techniques to detect and mitigate bias in AI Explore methods and tools for achieving transparency and explainability Discover best practices for privacy preservation and security in AI Gain insights into designing robust and reliable AI models Who This Book Is For AI practitioners, data scientists, machine learning engineers, researchers, policymakers, and students interested in the ethical aspects of AI</description><edition>1</edition><identifier>ISBN: 1484299817</identifier><identifier>ISBN: 9781484299814</identifier><identifier>ISBN: 1484299825</identifier><identifier>ISBN: 9781484299821</identifier><identifier>EISBN: 1484299825</identifier><identifier>EISBN: 9781484299821</identifier><identifier>DOI: 10.1007/978-1-4842-9982-1</identifier><identifier>OCLC: 1410594402</identifier><identifier>LCCallNum: QA76.73.P98 .M36 2023</identifier><language>eng</language><publisher>Berkeley, CA: Apress, an imprint of Springer Nature</publisher><subject>Artificial Intelligence ; Computer games ; Computer programming ; Computer Science ; General Engineering &amp; Project Administration ; General References ; Machine Learning ; Professional and Applied Computing ; Programming ; Python ; Python (Computer program language) ; Software Engineering</subject><creationdate>2023</creationdate><tpages>192</tpages><format>192</format><rights>2023</rights><rights>Avinash Manure, Shaleen Bengani, Saravanan S 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://content.knovel.com/content/Thumbs/thumb16128.gif</thumbnail><link.rule.ids>306,776,780,782,24741,27902</link.rule.ids></links><search><creatorcontrib>Avinash Manure, Shaleen Bengani, Saravanan S</creatorcontrib><title>Introduction to Responsible AI - Implement Ethical AI Using Python</title><description>Learn and implement responsible AI models using Python. This book will teach you how to balance ethical challenges with opportunities in artificial intelligence. The book starts with an introduction to the fundamentals of AI, with special emphasis given to the key principles of responsible AI. The authors then walk you through the critical issues of detecting and mitigating bias, making AI decisions understandable, preserving privacy, ensuring security, and designing robust models. Along the way, you'll gain an overview of tools, techniques, and code examples to implement the key principles you learn in real-world scenarios. The book concludes with a chapter devoted to fostering a deeper understanding of responsible AI's profound implications for the future. Each chapter offers a hands-on approach, enriched with practical insights and code snippets, enabling you to translate ethical considerations into actionable solutions. What You Will Learn Understand the principles of responsible AI and their importance in today's digital world Master techniques to detect and mitigate bias in AI Explore methods and tools for achieving transparency and explainability Discover best practices for privacy preservation and security in AI Gain insights into designing robust and reliable AI models Who This Book Is For AI practitioners, data scientists, machine learning engineers, researchers, policymakers, and students interested in the ethical aspects of AI</description><subject>Artificial Intelligence</subject><subject>Computer games</subject><subject>Computer programming</subject><subject>Computer Science</subject><subject>General Engineering &amp; Project Administration</subject><subject>General References</subject><subject>Machine Learning</subject><subject>Professional and Applied Computing</subject><subject>Programming</subject><subject>Python</subject><subject>Python (Computer program language)</subject><subject>Software Engineering</subject><isbn>1484299817</isbn><isbn>9781484299814</isbn><isbn>1484299825</isbn><isbn>9781484299821</isbn><isbn>1484299825</isbn><isbn>9781484299821</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2023</creationdate><recordtype>book</recordtype><sourceid>OODEK</sourceid><recordid>eNplkEFv1DAQhYNQEbD0ByBxyAEEPYR6bGdjH7erbYlUCVQBV8vZjLsh3jiN3aX998SbiB56sp79veeZlyTvgXwFQopzWYgMMi44zaQUNIMXyVuIMqr85ZOA4lUUQHLJOaGvk1Pv_xBCqOQghHiTXJRdGFx9vw2N69Lg0hv0vet8U1lMV2WapeW-t7jHLqSbsGu22sbrX77pbtMfj2HnunfJidHW4-l8LpLfl5uf62_Z9fercr26zjQlICFDwTjmRlRVXRcaBFBiloJvWQEUmaGUCE3Q5JyyOq95TUzBBMMKURosuGGL5PMU7NvGWu9MUJVzraf8oVBV68e9YLkUIEfybCK1b_Gv3zkbvDpYPOJqbO9_WTCy53NqP4xL4TCFKiAqdh1pBSryKhpUdHycHdrooZn5A30W_GXC-sHd3aMP6vj_dqxy0FZtLtaMyGWeyzjvhxnFweKtmyN5Dnkx1rFIPk3PbecOaNU46F4Pj0dKtX15syrLzeqK_QPhlprp</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Avinash Manure, Shaleen Bengani, Saravanan S</creator><general>Apress, an imprint of Springer Nature</general><general>Apress</general><general>Apress L. P</general><scope>YSPEL</scope><scope>OHILO</scope><scope>OODEK</scope></search><sort><creationdate>2023</creationdate><title>Introduction to Responsible AI - Implement Ethical AI Using Python</title><author>Avinash Manure, Shaleen Bengani, Saravanan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a20191-e834e5f8bbdd7a18120f684c3712e3f2208a0ef5423d5d4d0f7383ebee9fe74f3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Computer games</topic><topic>Computer programming</topic><topic>Computer Science</topic><topic>General Engineering &amp; Project Administration</topic><topic>General References</topic><topic>Machine Learning</topic><topic>Professional and Applied Computing</topic><topic>Programming</topic><topic>Python</topic><topic>Python (Computer program language)</topic><topic>Software Engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Avinash Manure, Shaleen Bengani, Saravanan S</creatorcontrib><collection>Perlego</collection><collection>O'Reilly Online Learning: Corporate Edition</collection><collection>O'Reilly Online Learning: Academic/Public Library Edition</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avinash Manure, Shaleen Bengani, Saravanan S</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Introduction to Responsible AI - Implement Ethical AI Using Python</btitle><date>2023</date><risdate>2023</risdate><isbn>1484299817</isbn><isbn>9781484299814</isbn><isbn>1484299825</isbn><isbn>9781484299821</isbn><eisbn>1484299825</eisbn><eisbn>9781484299821</eisbn><abstract>Learn and implement responsible AI models using Python. This book will teach you how to balance ethical challenges with opportunities in artificial intelligence. The book starts with an introduction to the fundamentals of AI, with special emphasis given to the key principles of responsible AI. The authors then walk you through the critical issues of detecting and mitigating bias, making AI decisions understandable, preserving privacy, ensuring security, and designing robust models. Along the way, you'll gain an overview of tools, techniques, and code examples to implement the key principles you learn in real-world scenarios. The book concludes with a chapter devoted to fostering a deeper understanding of responsible AI's profound implications for the future. Each chapter offers a hands-on approach, enriched with practical insights and code snippets, enabling you to translate ethical considerations into actionable solutions. What You Will Learn Understand the principles of responsible AI and their importance in today's digital world Master techniques to detect and mitigate bias in AI Explore methods and tools for achieving transparency and explainability Discover best practices for privacy preservation and security in AI Gain insights into designing robust and reliable AI models Who This Book Is For AI practitioners, data scientists, machine learning engineers, researchers, policymakers, and students interested in the ethical aspects of AI</abstract><cop>Berkeley, CA</cop><pub>Apress, an imprint of Springer Nature</pub><doi>10.1007/978-1-4842-9982-1</doi><oclcid>1410594402</oclcid><tpages>192</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 1484299817
ispartof
issn
language eng
recordid cdi_skillsoft_books24x7_bks000166819
source O'Reilly Online Learning: Academic/Public Library Edition
subjects Artificial Intelligence
Computer games
Computer programming
Computer Science
General Engineering & Project Administration
General References
Machine Learning
Professional and Applied Computing
Programming
Python
Python (Computer program language)
Software Engineering
title Introduction to Responsible AI - Implement Ethical AI Using Python
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_skill&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Introduction%20to%20Responsible%20AI%20-%20Implement%20Ethical%20AI%20Using%20Python&rft.au=Avinash%20Manure,%20Shaleen%20Bengani,%20Saravanan%20S&rft.date=2023&rft.isbn=1484299817&rft.isbn_list=9781484299814&rft.isbn_list=1484299825&rft.isbn_list=9781484299821&rft_id=info:doi/10.1007/978-1-4842-9982-1&rft_dat=%3Cproquest_skill%3EEBC30965599%3C/proquest_skill%3E%3Curl%3E%3C/url%3E&rft.eisbn=1484299825&rft.eisbn_list=9781484299821&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC30965599&rft_id=info:pmid/&rfr_iscdi=true