Maximum likelihood estimation for single particle, passive microrheology data with drift

Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al., Rheol. Act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of rheology (New York : 1978) 2016-05, Vol.60 (3), p.379-392
Hauptverfasser: Mellnik, John W. R., Lysy, Martin, Vasquez, Paula A., Pillai, Natesh S., Hill, David B., Cribb, Jeremy, McKinley, Scott A., Forest, M. Gregory
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue 3
container_start_page 379
container_title Journal of rheology (New York : 1978)
container_volume 60
creator Mellnik, John W. R.
Lysy, Martin
Vasquez, Paula A.
Pillai, Natesh S.
Hill, David B.
Cribb, Jeremy
McKinley, Scott A.
Forest, M. Gregory
description Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al., Rheol. Acta 37, 387–398 (1998)] or transformed to determine dynamic storage and loss moduli [Mason and Weitz, Phys. Rev. Lett. 74, 1250–1253 (1995)]. A prevalent hurdle arises when there is a nondiffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a Péclet number, the MSD statistics are distorted, and thus the path data must be “corrected” for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of Péclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model, because it affords tunable, subdiffusive MSD statistics consistent with typical 30 s long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.
doi_str_mv 10.1122/1.4943988
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1122_1_4943988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1122_1_4943988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-90d4c815c731e357f62883632d72c0cccf4c9bef168369d23afb9708f880fa6f3</originalsourceid><addsrcrecordid>eNqdkE9LxDAUxIMoWFcPfoNcFbvmJW2aHmVxVVjxouCtZPNnG203JYmr--2t7oJ3T294_BhmBqFzIFMASq9hWtQFq4U4QBmUlOSiBH6IMgKFyDkpy2N0EuMbIQCi4Bl6fZRfrv_ocefeTeda7zU2MbleJufX2PqAo1uvOoMHGZJTnbkaVYxuY3DvVPChNb7zqy3WMkn86VKLdXA2naIjK7tozvZ3gl7mt8-z-3zxdPcwu1nkijGe8proQgkoVcXAsLKynArBOKO6oooopWyh6qWxwMdvrSmTdllXRFghiJXcsgm62PmOWWIMxjZDGNOHbQOk-ZmkgWY_yche7tioXPot-D9448Mf2Azasm8h8nEZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximum likelihood estimation for single particle, passive microrheology data with drift</title><source>AIP Journals Complete</source><creator>Mellnik, John W. R. ; Lysy, Martin ; Vasquez, Paula A. ; Pillai, Natesh S. ; Hill, David B. ; Cribb, Jeremy ; McKinley, Scott A. ; Forest, M. Gregory</creator><creatorcontrib>Mellnik, John W. R. ; Lysy, Martin ; Vasquez, Paula A. ; Pillai, Natesh S. ; Hill, David B. ; Cribb, Jeremy ; McKinley, Scott A. ; Forest, M. Gregory</creatorcontrib><description>Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al., Rheol. Acta 37, 387–398 (1998)] or transformed to determine dynamic storage and loss moduli [Mason and Weitz, Phys. Rev. Lett. 74, 1250–1253 (1995)]. A prevalent hurdle arises when there is a nondiffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a Péclet number, the MSD statistics are distorted, and thus the path data must be “corrected” for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of Péclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model, because it affords tunable, subdiffusive MSD statistics consistent with typical 30 s long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.</description><identifier>ISSN: 0148-6055</identifier><identifier>EISSN: 1520-8516</identifier><identifier>DOI: 10.1122/1.4943988</identifier><identifier>CODEN: JORHD2</identifier><language>eng</language><ispartof>Journal of rheology (New York : 1978), 2016-05, Vol.60 (3), p.379-392</ispartof><rights>The Society of Rheology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-90d4c815c731e357f62883632d72c0cccf4c9bef168369d23afb9708f880fa6f3</citedby><cites>FETCH-LOGICAL-c336t-90d4c815c731e357f62883632d72c0cccf4c9bef168369d23afb9708f880fa6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4497,27903,27904</link.rule.ids></links><search><creatorcontrib>Mellnik, John W. R.</creatorcontrib><creatorcontrib>Lysy, Martin</creatorcontrib><creatorcontrib>Vasquez, Paula A.</creatorcontrib><creatorcontrib>Pillai, Natesh S.</creatorcontrib><creatorcontrib>Hill, David B.</creatorcontrib><creatorcontrib>Cribb, Jeremy</creatorcontrib><creatorcontrib>McKinley, Scott A.</creatorcontrib><creatorcontrib>Forest, M. Gregory</creatorcontrib><title>Maximum likelihood estimation for single particle, passive microrheology data with drift</title><title>Journal of rheology (New York : 1978)</title><description>Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al., Rheol. Acta 37, 387–398 (1998)] or transformed to determine dynamic storage and loss moduli [Mason and Weitz, Phys. Rev. Lett. 74, 1250–1253 (1995)]. A prevalent hurdle arises when there is a nondiffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a Péclet number, the MSD statistics are distorted, and thus the path data must be “corrected” for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of Péclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model, because it affords tunable, subdiffusive MSD statistics consistent with typical 30 s long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.</description><issn>0148-6055</issn><issn>1520-8516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LxDAUxIMoWFcPfoNcFbvmJW2aHmVxVVjxouCtZPNnG203JYmr--2t7oJ3T294_BhmBqFzIFMASq9hWtQFq4U4QBmUlOSiBH6IMgKFyDkpy2N0EuMbIQCi4Bl6fZRfrv_ocefeTeda7zU2MbleJufX2PqAo1uvOoMHGZJTnbkaVYxuY3DvVPChNb7zqy3WMkn86VKLdXA2naIjK7tozvZ3gl7mt8-z-3zxdPcwu1nkijGe8proQgkoVcXAsLKynArBOKO6oooopWyh6qWxwMdvrSmTdllXRFghiJXcsgm62PmOWWIMxjZDGNOHbQOk-ZmkgWY_yche7tioXPot-D9448Mf2Azasm8h8nEZ</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Mellnik, John W. R.</creator><creator>Lysy, Martin</creator><creator>Vasquez, Paula A.</creator><creator>Pillai, Natesh S.</creator><creator>Hill, David B.</creator><creator>Cribb, Jeremy</creator><creator>McKinley, Scott A.</creator><creator>Forest, M. Gregory</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160501</creationdate><title>Maximum likelihood estimation for single particle, passive microrheology data with drift</title><author>Mellnik, John W. R. ; Lysy, Martin ; Vasquez, Paula A. ; Pillai, Natesh S. ; Hill, David B. ; Cribb, Jeremy ; McKinley, Scott A. ; Forest, M. Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-90d4c815c731e357f62883632d72c0cccf4c9bef168369d23afb9708f880fa6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mellnik, John W. R.</creatorcontrib><creatorcontrib>Lysy, Martin</creatorcontrib><creatorcontrib>Vasquez, Paula A.</creatorcontrib><creatorcontrib>Pillai, Natesh S.</creatorcontrib><creatorcontrib>Hill, David B.</creatorcontrib><creatorcontrib>Cribb, Jeremy</creatorcontrib><creatorcontrib>McKinley, Scott A.</creatorcontrib><creatorcontrib>Forest, M. Gregory</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of rheology (New York : 1978)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mellnik, John W. R.</au><au>Lysy, Martin</au><au>Vasquez, Paula A.</au><au>Pillai, Natesh S.</au><au>Hill, David B.</au><au>Cribb, Jeremy</au><au>McKinley, Scott A.</au><au>Forest, M. Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum likelihood estimation for single particle, passive microrheology data with drift</atitle><jtitle>Journal of rheology (New York : 1978)</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>60</volume><issue>3</issue><spage>379</spage><epage>392</epage><pages>379-392</pages><issn>0148-6055</issn><eissn>1520-8516</eissn><coden>JORHD2</coden><abstract>Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al., Rheol. Acta 37, 387–398 (1998)] or transformed to determine dynamic storage and loss moduli [Mason and Weitz, Phys. Rev. Lett. 74, 1250–1253 (1995)]. A prevalent hurdle arises when there is a nondiffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a Péclet number, the MSD statistics are distorted, and thus the path data must be “corrected” for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of Péclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model, because it affords tunable, subdiffusive MSD statistics consistent with typical 30 s long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.</abstract><doi>10.1122/1.4943988</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-6055
ispartof Journal of rheology (New York : 1978), 2016-05, Vol.60 (3), p.379-392
issn 0148-6055
1520-8516
language eng
recordid cdi_scitation_primary_10_1122_1_4943988
source AIP Journals Complete
title Maximum likelihood estimation for single particle, passive microrheology data with drift
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20likelihood%20estimation%20for%20single%20particle,%20passive%20microrheology%20data%20with%20drift&rft.jtitle=Journal%20of%20rheology%20(New%20York%20:%201978)&rft.au=Mellnik,%20John%20W.%20R.&rft.date=2016-05-01&rft.volume=60&rft.issue=3&rft.spage=379&rft.epage=392&rft.pages=379-392&rft.issn=0148-6055&rft.eissn=1520-8516&rft.coden=JORHD2&rft_id=info:doi/10.1122/1.4943988&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1122_1_4943988%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true