Maximum likelihood estimation for single particle, passive microrheology data with drift
Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al., Rheol. Act...
Gespeichert in:
Veröffentlicht in: | Journal of rheology (New York : 1978) 2016-05, Vol.60 (3), p.379-392 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 392 |
---|---|
container_issue | 3 |
container_start_page | 379 |
container_title | Journal of rheology (New York : 1978) |
container_volume | 60 |
creator | Mellnik, John W. R. Lysy, Martin Vasquez, Paula A. Pillai, Natesh S. Hill, David B. Cribb, Jeremy McKinley, Scott A. Forest, M. Gregory |
description | Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al., Rheol. Acta 37, 387–398 (1998)] or transformed to determine dynamic storage and loss moduli [Mason and Weitz, Phys. Rev. Lett. 74, 1250–1253 (1995)]. A prevalent hurdle arises when there is a nondiffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a Péclet number, the MSD statistics are distorted, and thus the path data must be “corrected” for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of Péclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model, because it affords tunable, subdiffusive MSD statistics consistent with typical 30 s long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus. |
doi_str_mv | 10.1122/1.4943988 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1122_1_4943988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1122_1_4943988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-90d4c815c731e357f62883632d72c0cccf4c9bef168369d23afb9708f880fa6f3</originalsourceid><addsrcrecordid>eNqdkE9LxDAUxIMoWFcPfoNcFbvmJW2aHmVxVVjxouCtZPNnG203JYmr--2t7oJ3T294_BhmBqFzIFMASq9hWtQFq4U4QBmUlOSiBH6IMgKFyDkpy2N0EuMbIQCi4Bl6fZRfrv_ocefeTeda7zU2MbleJufX2PqAo1uvOoMHGZJTnbkaVYxuY3DvVPChNb7zqy3WMkn86VKLdXA2naIjK7tozvZ3gl7mt8-z-3zxdPcwu1nkijGe8proQgkoVcXAsLKynArBOKO6oooopWyh6qWxwMdvrSmTdllXRFghiJXcsgm62PmOWWIMxjZDGNOHbQOk-ZmkgWY_yche7tioXPot-D9448Mf2Azasm8h8nEZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximum likelihood estimation for single particle, passive microrheology data with drift</title><source>AIP Journals Complete</source><creator>Mellnik, John W. R. ; Lysy, Martin ; Vasquez, Paula A. ; Pillai, Natesh S. ; Hill, David B. ; Cribb, Jeremy ; McKinley, Scott A. ; Forest, M. Gregory</creator><creatorcontrib>Mellnik, John W. R. ; Lysy, Martin ; Vasquez, Paula A. ; Pillai, Natesh S. ; Hill, David B. ; Cribb, Jeremy ; McKinley, Scott A. ; Forest, M. Gregory</creatorcontrib><description>Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al., Rheol. Acta 37, 387–398 (1998)] or transformed to determine dynamic storage and loss moduli [Mason and Weitz, Phys. Rev. Lett. 74, 1250–1253 (1995)]. A prevalent hurdle arises when there is a nondiffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a Péclet number, the MSD statistics are distorted, and thus the path data must be “corrected” for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of Péclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model, because it affords tunable, subdiffusive MSD statistics consistent with typical 30 s long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.</description><identifier>ISSN: 0148-6055</identifier><identifier>EISSN: 1520-8516</identifier><identifier>DOI: 10.1122/1.4943988</identifier><identifier>CODEN: JORHD2</identifier><language>eng</language><ispartof>Journal of rheology (New York : 1978), 2016-05, Vol.60 (3), p.379-392</ispartof><rights>The Society of Rheology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-90d4c815c731e357f62883632d72c0cccf4c9bef168369d23afb9708f880fa6f3</citedby><cites>FETCH-LOGICAL-c336t-90d4c815c731e357f62883632d72c0cccf4c9bef168369d23afb9708f880fa6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4497,27903,27904</link.rule.ids></links><search><creatorcontrib>Mellnik, John W. R.</creatorcontrib><creatorcontrib>Lysy, Martin</creatorcontrib><creatorcontrib>Vasquez, Paula A.</creatorcontrib><creatorcontrib>Pillai, Natesh S.</creatorcontrib><creatorcontrib>Hill, David B.</creatorcontrib><creatorcontrib>Cribb, Jeremy</creatorcontrib><creatorcontrib>McKinley, Scott A.</creatorcontrib><creatorcontrib>Forest, M. Gregory</creatorcontrib><title>Maximum likelihood estimation for single particle, passive microrheology data with drift</title><title>Journal of rheology (New York : 1978)</title><description>Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al., Rheol. Acta 37, 387–398 (1998)] or transformed to determine dynamic storage and loss moduli [Mason and Weitz, Phys. Rev. Lett. 74, 1250–1253 (1995)]. A prevalent hurdle arises when there is a nondiffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a Péclet number, the MSD statistics are distorted, and thus the path data must be “corrected” for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of Péclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model, because it affords tunable, subdiffusive MSD statistics consistent with typical 30 s long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.</description><issn>0148-6055</issn><issn>1520-8516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LxDAUxIMoWFcPfoNcFbvmJW2aHmVxVVjxouCtZPNnG203JYmr--2t7oJ3T294_BhmBqFzIFMASq9hWtQFq4U4QBmUlOSiBH6IMgKFyDkpy2N0EuMbIQCi4Bl6fZRfrv_ocefeTeda7zU2MbleJufX2PqAo1uvOoMHGZJTnbkaVYxuY3DvVPChNb7zqy3WMkn86VKLdXA2naIjK7tozvZ3gl7mt8-z-3zxdPcwu1nkijGe8proQgkoVcXAsLKynArBOKO6oooopWyh6qWxwMdvrSmTdllXRFghiJXcsgm62PmOWWIMxjZDGNOHbQOk-ZmkgWY_yche7tioXPot-D9448Mf2Azasm8h8nEZ</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Mellnik, John W. R.</creator><creator>Lysy, Martin</creator><creator>Vasquez, Paula A.</creator><creator>Pillai, Natesh S.</creator><creator>Hill, David B.</creator><creator>Cribb, Jeremy</creator><creator>McKinley, Scott A.</creator><creator>Forest, M. Gregory</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160501</creationdate><title>Maximum likelihood estimation for single particle, passive microrheology data with drift</title><author>Mellnik, John W. R. ; Lysy, Martin ; Vasquez, Paula A. ; Pillai, Natesh S. ; Hill, David B. ; Cribb, Jeremy ; McKinley, Scott A. ; Forest, M. Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-90d4c815c731e357f62883632d72c0cccf4c9bef168369d23afb9708f880fa6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mellnik, John W. R.</creatorcontrib><creatorcontrib>Lysy, Martin</creatorcontrib><creatorcontrib>Vasquez, Paula A.</creatorcontrib><creatorcontrib>Pillai, Natesh S.</creatorcontrib><creatorcontrib>Hill, David B.</creatorcontrib><creatorcontrib>Cribb, Jeremy</creatorcontrib><creatorcontrib>McKinley, Scott A.</creatorcontrib><creatorcontrib>Forest, M. Gregory</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of rheology (New York : 1978)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mellnik, John W. R.</au><au>Lysy, Martin</au><au>Vasquez, Paula A.</au><au>Pillai, Natesh S.</au><au>Hill, David B.</au><au>Cribb, Jeremy</au><au>McKinley, Scott A.</au><au>Forest, M. Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum likelihood estimation for single particle, passive microrheology data with drift</atitle><jtitle>Journal of rheology (New York : 1978)</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>60</volume><issue>3</issue><spage>379</spage><epage>392</epage><pages>379-392</pages><issn>0148-6055</issn><eissn>1520-8516</eissn><coden>JORHD2</coden><abstract>Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al., Rheol. Acta 37, 387–398 (1998)] or transformed to determine dynamic storage and loss moduli [Mason and Weitz, Phys. Rev. Lett. 74, 1250–1253 (1995)]. A prevalent hurdle arises when there is a nondiffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a Péclet number, the MSD statistics are distorted, and thus the path data must be “corrected” for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of Péclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model, because it affords tunable, subdiffusive MSD statistics consistent with typical 30 s long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.</abstract><doi>10.1122/1.4943988</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-6055 |
ispartof | Journal of rheology (New York : 1978), 2016-05, Vol.60 (3), p.379-392 |
issn | 0148-6055 1520-8516 |
language | eng |
recordid | cdi_scitation_primary_10_1122_1_4943988 |
source | AIP Journals Complete |
title | Maximum likelihood estimation for single particle, passive microrheology data with drift |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20likelihood%20estimation%20for%20single%20particle,%20passive%20microrheology%20data%20with%20drift&rft.jtitle=Journal%20of%20rheology%20(New%20York%20:%201978)&rft.au=Mellnik,%20John%20W.%20R.&rft.date=2016-05-01&rft.volume=60&rft.issue=3&rft.spage=379&rft.epage=392&rft.pages=379-392&rft.issn=0148-6055&rft.eissn=1520-8516&rft.coden=JORHD2&rft_id=info:doi/10.1122/1.4943988&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1122_1_4943988%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |