A full-chain constitutive model for bidisperse blends of linear polymers

We develop a full-chain tube-based constitutive model [along the lines of Graham et al. J. Rheol. 47, 1171 (2003)] for the nonlinear rheology of bidisperse blends of long and short linear polymers. For a test chain in the blend, we use the physical picture of a fat tube, representing long-lived enta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of rheology (New York : 1978) 2012-07, Vol.56 (4), p.823-873
Hauptverfasser: Read, D. J., Jagannathan, K., Sukumaran, S. K., Auhl, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 873
container_issue 4
container_start_page 823
container_title Journal of rheology (New York : 1978)
container_volume 56
creator Read, D. J.
Jagannathan, K.
Sukumaran, S. K.
Auhl, D.
description We develop a full-chain tube-based constitutive model [along the lines of Graham et al. J. Rheol. 47, 1171 (2003)] for the nonlinear rheology of bidisperse blends of long and short linear polymers. For a test chain in the blend, we use the physical picture of a fat tube, representing long-lived entanglements with long chains, and a thin tube, representing entanglements with all chains. The model includes the processes of reptation, contour length fluctuation (CLF), constraint release, and stretch relaxation. In the linear rheology regime, we identify a new relaxation process: CLF along the fat tube contour, achieved via a combination of chain motion along the thin tube, and local constraint release of the thin tube as it explores the width of the fat tube. This process is sufficiently fast to relax a significant portion of the long chains before reptation. It provides an explanation of the decrease in terminal time of long chains upon dilution with short chains in a framework where motion along the thin tube is the dominant reptation mechanism. Once the linear rheology is matched, nonlinear rheology is predicted with no further adjustments to the model. The model compares well against several experimental datasets on bidisperse blends. In particular, it predicts the onset rate of extension hardening, which is often significantly below the inverse Rouse time of the long chains.
doi_str_mv 10.1122/1.4707948
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1122_1_4707948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1122_1_4707948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-65b498d4ad7445c3235a46288bf9f2b418513c133a2e47483075a48bcb8686503</originalsourceid><addsrcrecordid>eNqNkE1LAzEQQIMoWKsH_0EuHhRW873Zi1CKWqHgRc8hm00wkm6WZFvovze1RU-KpznMm8fwALjE6BZjQu7wLatR3TB5BCaYE1RJjsUxmCDMZCUQ56fgLOcPhDCWTEzAYgbdOoTKvGvfQxP7PPpxPfqNhavY2QBdTLD1nc-DTdnCNti-yzA6GHxvdYJDDNtVWZ2DE6dDtheHOQVvjw-v80W1fHl6ns-WlWEcjZXgLWtkx3RXM8YNJZRrJoiUrWscaRku_1KDKdXEsppJiuoCyNa0UkjBEZ2C673XpJhzsk4Nya902iqM1C6BwuqQoLBXe3bQ2ejgku6Nz98HRCDSFGXh7vdcNn7Uo4_979KZ2vVSX73UoVcR3Pxb8Be8iekHVEPn6CcWwouZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A full-chain constitutive model for bidisperse blends of linear polymers</title><source>AIP Journals Complete</source><creator>Read, D. J. ; Jagannathan, K. ; Sukumaran, S. K. ; Auhl, D.</creator><creatorcontrib>Read, D. J. ; Jagannathan, K. ; Sukumaran, S. K. ; Auhl, D.</creatorcontrib><description>We develop a full-chain tube-based constitutive model [along the lines of Graham et al. J. Rheol. 47, 1171 (2003)] for the nonlinear rheology of bidisperse blends of long and short linear polymers. For a test chain in the blend, we use the physical picture of a fat tube, representing long-lived entanglements with long chains, and a thin tube, representing entanglements with all chains. The model includes the processes of reptation, contour length fluctuation (CLF), constraint release, and stretch relaxation. In the linear rheology regime, we identify a new relaxation process: CLF along the fat tube contour, achieved via a combination of chain motion along the thin tube, and local constraint release of the thin tube as it explores the width of the fat tube. This process is sufficiently fast to relax a significant portion of the long chains before reptation. It provides an explanation of the decrease in terminal time of long chains upon dilution with short chains in a framework where motion along the thin tube is the dominant reptation mechanism. Once the linear rheology is matched, nonlinear rheology is predicted with no further adjustments to the model. The model compares well against several experimental datasets on bidisperse blends. In particular, it predicts the onset rate of extension hardening, which is often significantly below the inverse Rouse time of the long chains.</description><identifier>ISSN: 0148-6055</identifier><identifier>EISSN: 1520-8516</identifier><identifier>DOI: 10.1122/1.4707948</identifier><identifier>CODEN: JORHD2</identifier><language>eng</language><publisher>Melville, NY: The Society of Rheology</publisher><subject>Applied sciences ; Bidisperse ; Blend ; Exact sciences and technology ; Melt ; Organic polymers ; Physicochemistry of polymers ; Polymer ; Properties and characterization ; Rheology ; Rheology and viscoelasticity</subject><ispartof>Journal of rheology (New York : 1978), 2012-07, Vol.56 (4), p.823-873</ispartof><rights>The Society of Rheology</rights><rights>2012 The Society of Rheology</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-65b498d4ad7445c3235a46288bf9f2b418513c133a2e47483075a48bcb8686503</citedby><cites>FETCH-LOGICAL-c450t-65b498d4ad7445c3235a46288bf9f2b418513c133a2e47483075a48bcb8686503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26029503$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Read, D. J.</creatorcontrib><creatorcontrib>Jagannathan, K.</creatorcontrib><creatorcontrib>Sukumaran, S. K.</creatorcontrib><creatorcontrib>Auhl, D.</creatorcontrib><title>A full-chain constitutive model for bidisperse blends of linear polymers</title><title>Journal of rheology (New York : 1978)</title><description>We develop a full-chain tube-based constitutive model [along the lines of Graham et al. J. Rheol. 47, 1171 (2003)] for the nonlinear rheology of bidisperse blends of long and short linear polymers. For a test chain in the blend, we use the physical picture of a fat tube, representing long-lived entanglements with long chains, and a thin tube, representing entanglements with all chains. The model includes the processes of reptation, contour length fluctuation (CLF), constraint release, and stretch relaxation. In the linear rheology regime, we identify a new relaxation process: CLF along the fat tube contour, achieved via a combination of chain motion along the thin tube, and local constraint release of the thin tube as it explores the width of the fat tube. This process is sufficiently fast to relax a significant portion of the long chains before reptation. It provides an explanation of the decrease in terminal time of long chains upon dilution with short chains in a framework where motion along the thin tube is the dominant reptation mechanism. Once the linear rheology is matched, nonlinear rheology is predicted with no further adjustments to the model. The model compares well against several experimental datasets on bidisperse blends. In particular, it predicts the onset rate of extension hardening, which is often significantly below the inverse Rouse time of the long chains.</description><subject>Applied sciences</subject><subject>Bidisperse</subject><subject>Blend</subject><subject>Exact sciences and technology</subject><subject>Melt</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymer</subject><subject>Properties and characterization</subject><subject>Rheology</subject><subject>Rheology and viscoelasticity</subject><issn>0148-6055</issn><issn>1520-8516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQQIMoWKsH_0EuHhRW873Zi1CKWqHgRc8hm00wkm6WZFvovze1RU-KpznMm8fwALjE6BZjQu7wLatR3TB5BCaYE1RJjsUxmCDMZCUQ56fgLOcPhDCWTEzAYgbdOoTKvGvfQxP7PPpxPfqNhavY2QBdTLD1nc-DTdnCNti-yzA6GHxvdYJDDNtVWZ2DE6dDtheHOQVvjw-v80W1fHl6ns-WlWEcjZXgLWtkx3RXM8YNJZRrJoiUrWscaRku_1KDKdXEsppJiuoCyNa0UkjBEZ2C673XpJhzsk4Nya902iqM1C6BwuqQoLBXe3bQ2ejgku6Nz98HRCDSFGXh7vdcNn7Uo4_979KZ2vVSX73UoVcR3Pxb8Be8iekHVEPn6CcWwouZ</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Read, D. J.</creator><creator>Jagannathan, K.</creator><creator>Sukumaran, S. K.</creator><creator>Auhl, D.</creator><general>The Society of Rheology</general><general>Society of Rheology</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>A full-chain constitutive model for bidisperse blends of linear polymers</title><author>Read, D. J. ; Jagannathan, K. ; Sukumaran, S. K. ; Auhl, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-65b498d4ad7445c3235a46288bf9f2b418513c133a2e47483075a48bcb8686503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bidisperse</topic><topic>Blend</topic><topic>Exact sciences and technology</topic><topic>Melt</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymer</topic><topic>Properties and characterization</topic><topic>Rheology</topic><topic>Rheology and viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Read, D. J.</creatorcontrib><creatorcontrib>Jagannathan, K.</creatorcontrib><creatorcontrib>Sukumaran, S. K.</creatorcontrib><creatorcontrib>Auhl, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of rheology (New York : 1978)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Read, D. J.</au><au>Jagannathan, K.</au><au>Sukumaran, S. K.</au><au>Auhl, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A full-chain constitutive model for bidisperse blends of linear polymers</atitle><jtitle>Journal of rheology (New York : 1978)</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>56</volume><issue>4</issue><spage>823</spage><epage>873</epage><pages>823-873</pages><issn>0148-6055</issn><eissn>1520-8516</eissn><coden>JORHD2</coden><abstract>We develop a full-chain tube-based constitutive model [along the lines of Graham et al. J. Rheol. 47, 1171 (2003)] for the nonlinear rheology of bidisperse blends of long and short linear polymers. For a test chain in the blend, we use the physical picture of a fat tube, representing long-lived entanglements with long chains, and a thin tube, representing entanglements with all chains. The model includes the processes of reptation, contour length fluctuation (CLF), constraint release, and stretch relaxation. In the linear rheology regime, we identify a new relaxation process: CLF along the fat tube contour, achieved via a combination of chain motion along the thin tube, and local constraint release of the thin tube as it explores the width of the fat tube. This process is sufficiently fast to relax a significant portion of the long chains before reptation. It provides an explanation of the decrease in terminal time of long chains upon dilution with short chains in a framework where motion along the thin tube is the dominant reptation mechanism. Once the linear rheology is matched, nonlinear rheology is predicted with no further adjustments to the model. The model compares well against several experimental datasets on bidisperse blends. In particular, it predicts the onset rate of extension hardening, which is often significantly below the inverse Rouse time of the long chains.</abstract><cop>Melville, NY</cop><pub>The Society of Rheology</pub><doi>10.1122/1.4707948</doi><tpages>51</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-6055
ispartof Journal of rheology (New York : 1978), 2012-07, Vol.56 (4), p.823-873
issn 0148-6055
1520-8516
language eng
recordid cdi_scitation_primary_10_1122_1_4707948
source AIP Journals Complete
subjects Applied sciences
Bidisperse
Blend
Exact sciences and technology
Melt
Organic polymers
Physicochemistry of polymers
Polymer
Properties and characterization
Rheology
Rheology and viscoelasticity
title A full-chain constitutive model for bidisperse blends of linear polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20full-chain%20constitutive%20model%20for%20bidisperse%20blends%20of%20linear%20polymers&rft.jtitle=Journal%20of%20rheology%20(New%20York%20:%201978)&rft.au=Read,%20D.%20J.&rft.date=2012-07-01&rft.volume=56&rft.issue=4&rft.spage=823&rft.epage=873&rft.pages=823-873&rft.issn=0148-6055&rft.eissn=1520-8516&rft.coden=JORHD2&rft_id=info:doi/10.1122/1.4707948&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1122_1_4707948%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true