Summary of “Statistical learning and data science techniques in acoustics research”
Increases in computational capabilities have made statistical learning and data science techniques more accessible to researchers. This paper summarizes research presented in two special sessions, one each at the Spring 2016 meeting in Salt Lake City, UT and the Spring 2017 meeting in Boston, MA. Th...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 30 |
creator | Rathsam, Jonathan Nykaza, Edward Gille, Laure-Anne |
description | Increases in computational capabilities have made statistical learning and data science techniques more accessible to researchers. This paper summarizes research presented in two special sessions, one each at the Spring 2016 meeting in Salt Lake City, UT and the Spring 2017 meeting in Boston, MA. The sessions were cosponsored by the Noise and Signal Processing Technical Committees. The speakers represent industry, academia, and government institutions in the United States, France, England, and the Netherlands. Presentation topics covered a variety of acoustic disciplines with a focus on machine learning techniques, Bayesian techniques, and advanced statistical models. |
doi_str_mv | 10.1121/2.0000571 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1121_2_0000571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>poma</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1751-7fb826436d403598a9b78a36d59a5c3317e5dd34383ea16827c6d49f8c36ad003</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMgWKsL3yBrYWp-Jn9LKf4UCi6q6C7cJhkbaTN1MiO464Poy_VJnMGCO-_mcuF8l3MOQheUTChl9IpNSD9C0SM0ooabQhPycoJOc34jRFImxQg9L7rNBppPXFd4v_tatNDG3EYHa7wO0KSYXjEkjz20gLOLIbmA2-BWKb53IeOYMLi6G5CMm5B7xq32u-8zdFzBOofzwx6jp9ubx-l9MX-4m02v50WmStBCVUvNZMmlLwkXRoNZKg39KQwIxzlVQXjPS655ACo1U66Xmko7LsETwsfo8vdv723wXie7beKQyH7UjWX2UIHd-uo_MSV26OwP4D8wsmIc</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Summary of “Statistical learning and data science techniques in acoustics research”</title><source>AIP Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rathsam, Jonathan ; Nykaza, Edward ; Gille, Laure-Anne</creator><creatorcontrib>Rathsam, Jonathan ; Nykaza, Edward ; Gille, Laure-Anne</creatorcontrib><description>Increases in computational capabilities have made statistical learning and data science techniques more accessible to researchers. This paper summarizes research presented in two special sessions, one each at the Spring 2016 meeting in Salt Lake City, UT and the Spring 2017 meeting in Boston, MA. The sessions were cosponsored by the Noise and Signal Processing Technical Committees. The speakers represent industry, academia, and government institutions in the United States, France, England, and the Netherlands. Presentation topics covered a variety of acoustic disciplines with a focus on machine learning techniques, Bayesian techniques, and advanced statistical models.</description><identifier>EISSN: 1939-800X</identifier><identifier>DOI: 10.1121/2.0000571</identifier><identifier>CODEN: PMARCW</identifier><language>eng</language><ispartof>Proceedings of Meetings on Acoustics, 2017, Vol.30 (1)</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/poma/article-lookup/doi/10.1121/2.0000571$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>208,309,310,776,780,785,786,790,4498,23909,23910,25118,27902,76127</link.rule.ids></links><search><creatorcontrib>Rathsam, Jonathan</creatorcontrib><creatorcontrib>Nykaza, Edward</creatorcontrib><creatorcontrib>Gille, Laure-Anne</creatorcontrib><title>Summary of “Statistical learning and data science techniques in acoustics research”</title><title>Proceedings of Meetings on Acoustics</title><description>Increases in computational capabilities have made statistical learning and data science techniques more accessible to researchers. This paper summarizes research presented in two special sessions, one each at the Spring 2016 meeting in Salt Lake City, UT and the Spring 2017 meeting in Boston, MA. The sessions were cosponsored by the Noise and Signal Processing Technical Committees. The speakers represent industry, academia, and government institutions in the United States, France, England, and the Netherlands. Presentation topics covered a variety of acoustic disciplines with a focus on machine learning techniques, Bayesian techniques, and advanced statistical models.</description><issn>1939-800X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNp9kM1KAzEUhYMgWKsL3yBrYWp-Jn9LKf4UCi6q6C7cJhkbaTN1MiO464Poy_VJnMGCO-_mcuF8l3MOQheUTChl9IpNSD9C0SM0ooabQhPycoJOc34jRFImxQg9L7rNBppPXFd4v_tatNDG3EYHa7wO0KSYXjEkjz20gLOLIbmA2-BWKb53IeOYMLi6G5CMm5B7xq32u-8zdFzBOofzwx6jp9ubx-l9MX-4m02v50WmStBCVUvNZMmlLwkXRoNZKg39KQwIxzlVQXjPS655ACo1U66Xmko7LsETwsfo8vdv723wXie7beKQyH7UjWX2UIHd-uo_MSV26OwP4D8wsmIc</recordid><startdate>20170625</startdate><enddate>20170625</enddate><creator>Rathsam, Jonathan</creator><creator>Nykaza, Edward</creator><creator>Gille, Laure-Anne</creator><scope/></search><sort><creationdate>20170625</creationdate><title>Summary of “Statistical learning and data science techniques in acoustics research”</title><author>Rathsam, Jonathan ; Nykaza, Edward ; Gille, Laure-Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1751-7fb826436d403598a9b78a36d59a5c3317e5dd34383ea16827c6d49f8c36ad003</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rathsam, Jonathan</creatorcontrib><creatorcontrib>Nykaza, Edward</creatorcontrib><creatorcontrib>Gille, Laure-Anne</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rathsam, Jonathan</au><au>Nykaza, Edward</au><au>Gille, Laure-Anne</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Summary of “Statistical learning and data science techniques in acoustics research”</atitle><btitle>Proceedings of Meetings on Acoustics</btitle><date>2017-06-25</date><risdate>2017</risdate><volume>30</volume><issue>1</issue><eissn>1939-800X</eissn><coden>PMARCW</coden><abstract>Increases in computational capabilities have made statistical learning and data science techniques more accessible to researchers. This paper summarizes research presented in two special sessions, one each at the Spring 2016 meeting in Salt Lake City, UT and the Spring 2017 meeting in Boston, MA. The sessions were cosponsored by the Noise and Signal Processing Technical Committees. The speakers represent industry, academia, and government institutions in the United States, France, England, and the Netherlands. Presentation topics covered a variety of acoustic disciplines with a focus on machine learning techniques, Bayesian techniques, and advanced statistical models.</abstract><doi>10.1121/2.0000571</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1939-800X |
ispartof | Proceedings of Meetings on Acoustics, 2017, Vol.30 (1) |
issn | 1939-800X |
language | eng |
recordid | cdi_scitation_primary_10_1121_2_0000571 |
source | AIP Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Summary of “Statistical learning and data science techniques in acoustics research” |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Summary%20of%20%E2%80%9CStatistical%20learning%20and%20data%20science%20techniques%20in%20acoustics%20research%E2%80%9D&rft.btitle=Proceedings%20of%20Meetings%20on%20Acoustics&rft.au=Rathsam,%20Jonathan&rft.date=2017-06-25&rft.volume=30&rft.issue=1&rft.eissn=1939-800X&rft.coden=PMARCW&rft_id=info:doi/10.1121/2.0000571&rft_dat=%3Cscitation%3Epoma%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |