Summary of “Statistical learning and data science techniques in acoustics research”

Increases in computational capabilities have made statistical learning and data science techniques more accessible to researchers. This paper summarizes research presented in two special sessions, one each at the Spring 2016 meeting in Salt Lake City, UT and the Spring 2017 meeting in Boston, MA. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rathsam, Jonathan, Nykaza, Edward, Gille, Laure-Anne
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 30
creator Rathsam, Jonathan
Nykaza, Edward
Gille, Laure-Anne
description Increases in computational capabilities have made statistical learning and data science techniques more accessible to researchers. This paper summarizes research presented in two special sessions, one each at the Spring 2016 meeting in Salt Lake City, UT and the Spring 2017 meeting in Boston, MA. The sessions were cosponsored by the Noise and Signal Processing Technical Committees. The speakers represent industry, academia, and government institutions in the United States, France, England, and the Netherlands. Presentation topics covered a variety of acoustic disciplines with a focus on machine learning techniques, Bayesian techniques, and advanced statistical models.
doi_str_mv 10.1121/2.0000571
format Conference Proceeding
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1121_2_0000571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>poma</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1751-7fb826436d403598a9b78a36d59a5c3317e5dd34383ea16827c6d49f8c36ad003</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMgWKsL3yBrYWp-Jn9LKf4UCi6q6C7cJhkbaTN1MiO464Poy_VJnMGCO-_mcuF8l3MOQheUTChl9IpNSD9C0SM0ooabQhPycoJOc34jRFImxQg9L7rNBppPXFd4v_tatNDG3EYHa7wO0KSYXjEkjz20gLOLIbmA2-BWKb53IeOYMLi6G5CMm5B7xq32u-8zdFzBOofzwx6jp9ubx-l9MX-4m02v50WmStBCVUvNZMmlLwkXRoNZKg39KQwIxzlVQXjPS655ACo1U66Xmko7LsETwsfo8vdv723wXie7beKQyH7UjWX2UIHd-uo_MSV26OwP4D8wsmIc</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Summary of “Statistical learning and data science techniques in acoustics research”</title><source>AIP Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rathsam, Jonathan ; Nykaza, Edward ; Gille, Laure-Anne</creator><creatorcontrib>Rathsam, Jonathan ; Nykaza, Edward ; Gille, Laure-Anne</creatorcontrib><description>Increases in computational capabilities have made statistical learning and data science techniques more accessible to researchers. This paper summarizes research presented in two special sessions, one each at the Spring 2016 meeting in Salt Lake City, UT and the Spring 2017 meeting in Boston, MA. The sessions were cosponsored by the Noise and Signal Processing Technical Committees. The speakers represent industry, academia, and government institutions in the United States, France, England, and the Netherlands. Presentation topics covered a variety of acoustic disciplines with a focus on machine learning techniques, Bayesian techniques, and advanced statistical models.</description><identifier>EISSN: 1939-800X</identifier><identifier>DOI: 10.1121/2.0000571</identifier><identifier>CODEN: PMARCW</identifier><language>eng</language><ispartof>Proceedings of Meetings on Acoustics, 2017, Vol.30 (1)</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/poma/article-lookup/doi/10.1121/2.0000571$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>208,309,310,776,780,785,786,790,4498,23909,23910,25118,27902,76127</link.rule.ids></links><search><creatorcontrib>Rathsam, Jonathan</creatorcontrib><creatorcontrib>Nykaza, Edward</creatorcontrib><creatorcontrib>Gille, Laure-Anne</creatorcontrib><title>Summary of “Statistical learning and data science techniques in acoustics research”</title><title>Proceedings of Meetings on Acoustics</title><description>Increases in computational capabilities have made statistical learning and data science techniques more accessible to researchers. This paper summarizes research presented in two special sessions, one each at the Spring 2016 meeting in Salt Lake City, UT and the Spring 2017 meeting in Boston, MA. The sessions were cosponsored by the Noise and Signal Processing Technical Committees. The speakers represent industry, academia, and government institutions in the United States, France, England, and the Netherlands. Presentation topics covered a variety of acoustic disciplines with a focus on machine learning techniques, Bayesian techniques, and advanced statistical models.</description><issn>1939-800X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNp9kM1KAzEUhYMgWKsL3yBrYWp-Jn9LKf4UCi6q6C7cJhkbaTN1MiO464Poy_VJnMGCO-_mcuF8l3MOQheUTChl9IpNSD9C0SM0ooabQhPycoJOc34jRFImxQg9L7rNBppPXFd4v_tatNDG3EYHa7wO0KSYXjEkjz20gLOLIbmA2-BWKb53IeOYMLi6G5CMm5B7xq32u-8zdFzBOofzwx6jp9ubx-l9MX-4m02v50WmStBCVUvNZMmlLwkXRoNZKg39KQwIxzlVQXjPS655ACo1U66Xmko7LsETwsfo8vdv723wXie7beKQyH7UjWX2UIHd-uo_MSV26OwP4D8wsmIc</recordid><startdate>20170625</startdate><enddate>20170625</enddate><creator>Rathsam, Jonathan</creator><creator>Nykaza, Edward</creator><creator>Gille, Laure-Anne</creator><scope/></search><sort><creationdate>20170625</creationdate><title>Summary of “Statistical learning and data science techniques in acoustics research”</title><author>Rathsam, Jonathan ; Nykaza, Edward ; Gille, Laure-Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1751-7fb826436d403598a9b78a36d59a5c3317e5dd34383ea16827c6d49f8c36ad003</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rathsam, Jonathan</creatorcontrib><creatorcontrib>Nykaza, Edward</creatorcontrib><creatorcontrib>Gille, Laure-Anne</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rathsam, Jonathan</au><au>Nykaza, Edward</au><au>Gille, Laure-Anne</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Summary of “Statistical learning and data science techniques in acoustics research”</atitle><btitle>Proceedings of Meetings on Acoustics</btitle><date>2017-06-25</date><risdate>2017</risdate><volume>30</volume><issue>1</issue><eissn>1939-800X</eissn><coden>PMARCW</coden><abstract>Increases in computational capabilities have made statistical learning and data science techniques more accessible to researchers. This paper summarizes research presented in two special sessions, one each at the Spring 2016 meeting in Salt Lake City, UT and the Spring 2017 meeting in Boston, MA. The sessions were cosponsored by the Noise and Signal Processing Technical Committees. The speakers represent industry, academia, and government institutions in the United States, France, England, and the Netherlands. Presentation topics covered a variety of acoustic disciplines with a focus on machine learning techniques, Bayesian techniques, and advanced statistical models.</abstract><doi>10.1121/2.0000571</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1939-800X
ispartof Proceedings of Meetings on Acoustics, 2017, Vol.30 (1)
issn 1939-800X
language eng
recordid cdi_scitation_primary_10_1121_2_0000571
source AIP Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Summary of “Statistical learning and data science techniques in acoustics research”
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Summary%20of%20%E2%80%9CStatistical%20learning%20and%20data%20science%20techniques%20in%20acoustics%20research%E2%80%9D&rft.btitle=Proceedings%20of%20Meetings%20on%20Acoustics&rft.au=Rathsam,%20Jonathan&rft.date=2017-06-25&rft.volume=30&rft.issue=1&rft.eissn=1939-800X&rft.coden=PMARCW&rft_id=info:doi/10.1121/2.0000571&rft_dat=%3Cscitation%3Epoma%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true