Modeling the spatial variations of the intracochlear fluid pressure based on in vivo mechanical measurements

The mammalian cochlea is a complex system consisting of two fluid-filled ducts separated by a structure known as the organ of Corti. Fluid pressure in the cochlear ducts interact with the organ of Corti to stimulate the mechanoelectrical receptors responsible for hearing. Because, until recently, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2019-10, Vol.146 (4), p.2833-2833
Hauptverfasser: Rouleau, Michael, Meaud, Julien
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2833
container_issue 4
container_start_page 2833
container_title The Journal of the Acoustical Society of America
container_volume 146
creator Rouleau, Michael
Meaud, Julien
description The mammalian cochlea is a complex system consisting of two fluid-filled ducts separated by a structure known as the organ of Corti. Fluid pressure in the cochlear ducts interact with the organ of Corti to stimulate the mechanoelectrical receptors responsible for hearing. Because, until recently, in vivo dynamic measurements were limited to the basilar membrane, most cochlear models consider only basilar membrane—fluid interactions. Recent measurements of tectorial membrane and reticular lamina motions using optical coherence tomography motivate us to develop cochlear models that takes into account separately coupling of the fluid with all these components of the organ of Corti. In this work, finite element models are used to simulate an apical slice of a mouse cochlea. Using experimentally measured motion of the stapes, reticular lamina, basilar membrane, and tectorial membrane [Lee et al., J. Neurosci. (2016)] as input, spatial variations of pressure in the cochlea are explored. This study investigates fluid dynamics in the cochlear ducts and explores the relationship between the motion of the organ of Corti and spatial pressure variations while providing a basis for future computational models to consider cochlear fluid dynamics in the entire cochlea.
doi_str_mv 10.1121/1.5136816
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1121_1_5136816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696-4e5fbff8870b4667f9a3a1dd48f1e21584aa89f2e750fd7bfe5bbcd6d31c05ef3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw4B_4ClKKN4kd54gqXlIRl96jjb2mRklc2Wkl_j3p48xpdjSfRtph7B7EAiCHJ1hIKJQGdcFmIHORaZmXl2wmhICsrJW6Zjcp_UxW6qKese4zWOr88M3HDfG0xdFjx_cY_XSFIfHgjokfxogmmE1HGLnrdt7ybaSUdpF4i4ksD8NE8b3fB96T2eDgzVTVEx6YnoYx3bIrh12iu7PO2fr1Zb18z1Zfbx_L51VmVK2ykqRrndO6Em2pVOVqLBCsLbUDykHqElHXLqdKCmer1pFsW2OVLcAISa6Ys4dTrYkhpUiu2UbfY_xtQDSHlRpozitN7OOJTcaPx5f_gf8AwAFqLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling the spatial variations of the intracochlear fluid pressure based on in vivo mechanical measurements</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Rouleau, Michael ; Meaud, Julien</creator><creatorcontrib>Rouleau, Michael ; Meaud, Julien</creatorcontrib><description>The mammalian cochlea is a complex system consisting of two fluid-filled ducts separated by a structure known as the organ of Corti. Fluid pressure in the cochlear ducts interact with the organ of Corti to stimulate the mechanoelectrical receptors responsible for hearing. Because, until recently, in vivo dynamic measurements were limited to the basilar membrane, most cochlear models consider only basilar membrane—fluid interactions. Recent measurements of tectorial membrane and reticular lamina motions using optical coherence tomography motivate us to develop cochlear models that takes into account separately coupling of the fluid with all these components of the organ of Corti. In this work, finite element models are used to simulate an apical slice of a mouse cochlea. Using experimentally measured motion of the stapes, reticular lamina, basilar membrane, and tectorial membrane [Lee et al., J. Neurosci. (2016)] as input, spatial variations of pressure in the cochlea are explored. This study investigates fluid dynamics in the cochlear ducts and explores the relationship between the motion of the organ of Corti and spatial pressure variations while providing a basis for future computational models to consider cochlear fluid dynamics in the entire cochlea.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.5136816</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2019-10, Vol.146 (4), p.2833-2833</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.5136816$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Rouleau, Michael</creatorcontrib><creatorcontrib>Meaud, Julien</creatorcontrib><title>Modeling the spatial variations of the intracochlear fluid pressure based on in vivo mechanical measurements</title><title>The Journal of the Acoustical Society of America</title><description>The mammalian cochlea is a complex system consisting of two fluid-filled ducts separated by a structure known as the organ of Corti. Fluid pressure in the cochlear ducts interact with the organ of Corti to stimulate the mechanoelectrical receptors responsible for hearing. Because, until recently, in vivo dynamic measurements were limited to the basilar membrane, most cochlear models consider only basilar membrane—fluid interactions. Recent measurements of tectorial membrane and reticular lamina motions using optical coherence tomography motivate us to develop cochlear models that takes into account separately coupling of the fluid with all these components of the organ of Corti. In this work, finite element models are used to simulate an apical slice of a mouse cochlea. Using experimentally measured motion of the stapes, reticular lamina, basilar membrane, and tectorial membrane [Lee et al., J. Neurosci. (2016)] as input, spatial variations of pressure in the cochlea are explored. This study investigates fluid dynamics in the cochlear ducts and explores the relationship between the motion of the organ of Corti and spatial pressure variations while providing a basis for future computational models to consider cochlear fluid dynamics in the entire cochlea.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqVw4B_4ClKKN4kd54gqXlIRl96jjb2mRklc2Wkl_j3p48xpdjSfRtph7B7EAiCHJ1hIKJQGdcFmIHORaZmXl2wmhICsrJW6Zjcp_UxW6qKese4zWOr88M3HDfG0xdFjx_cY_XSFIfHgjokfxogmmE1HGLnrdt7ybaSUdpF4i4ksD8NE8b3fB96T2eDgzVTVEx6YnoYx3bIrh12iu7PO2fr1Zb18z1Zfbx_L51VmVK2ykqRrndO6Em2pVOVqLBCsLbUDykHqElHXLqdKCmer1pFsW2OVLcAISa6Ys4dTrYkhpUiu2UbfY_xtQDSHlRpozitN7OOJTcaPx5f_gf8AwAFqLQ</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Rouleau, Michael</creator><creator>Meaud, Julien</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201910</creationdate><title>Modeling the spatial variations of the intracochlear fluid pressure based on in vivo mechanical measurements</title><author>Rouleau, Michael ; Meaud, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696-4e5fbff8870b4667f9a3a1dd48f1e21584aa89f2e750fd7bfe5bbcd6d31c05ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouleau, Michael</creatorcontrib><creatorcontrib>Meaud, Julien</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouleau, Michael</au><au>Meaud, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the spatial variations of the intracochlear fluid pressure based on in vivo mechanical measurements</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2019-10</date><risdate>2019</risdate><volume>146</volume><issue>4</issue><spage>2833</spage><epage>2833</epage><pages>2833-2833</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>The mammalian cochlea is a complex system consisting of two fluid-filled ducts separated by a structure known as the organ of Corti. Fluid pressure in the cochlear ducts interact with the organ of Corti to stimulate the mechanoelectrical receptors responsible for hearing. Because, until recently, in vivo dynamic measurements were limited to the basilar membrane, most cochlear models consider only basilar membrane—fluid interactions. Recent measurements of tectorial membrane and reticular lamina motions using optical coherence tomography motivate us to develop cochlear models that takes into account separately coupling of the fluid with all these components of the organ of Corti. In this work, finite element models are used to simulate an apical slice of a mouse cochlea. Using experimentally measured motion of the stapes, reticular lamina, basilar membrane, and tectorial membrane [Lee et al., J. Neurosci. (2016)] as input, spatial variations of pressure in the cochlea are explored. This study investigates fluid dynamics in the cochlear ducts and explores the relationship between the motion of the organ of Corti and spatial pressure variations while providing a basis for future computational models to consider cochlear fluid dynamics in the entire cochlea.</abstract><doi>10.1121/1.5136816</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2019-10, Vol.146 (4), p.2833-2833
issn 0001-4966
1520-8524
language eng
recordid cdi_scitation_primary_10_1121_1_5136816
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Modeling the spatial variations of the intracochlear fluid pressure based on in vivo mechanical measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20spatial%20variations%20of%20the%20intracochlear%20fluid%20pressure%20based%20on%20in%20vivo%20mechanical%20measurements&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Rouleau,%20Michael&rft.date=2019-10&rft.volume=146&rft.issue=4&rft.spage=2833&rft.epage=2833&rft.pages=2833-2833&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.5136816&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true