Mitigating the pitfalls of testing unmanned aerial system vehicles and components in anechoic chambers

Flow recirculation is known to develop inside a closed anechoic chamber when testing unmanned aerial system (UAS) rotor components and vehicles. This flow recirculation modifies the inflow through the vehicle’s rotors, which results in significant impacts to the measured acoustic signature. A measur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2018-09, Vol.144 (3), p.1830-1830
Hauptverfasser: Stephenson, James H., Weitsman, Daniel, Zawodny, Nikolas S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1830
container_issue 3
container_start_page 1830
container_title The Journal of the Acoustical Society of America
container_volume 144
creator Stephenson, James H.
Weitsman, Daniel
Zawodny, Nikolas S.
description Flow recirculation is known to develop inside a closed anechoic chamber when testing unmanned aerial system (UAS) rotor components and vehicles. This flow recirculation modifies the inflow through the vehicle’s rotors, which results in significant impacts to the measured acoustic signature. A measurement campaign was undertaken at NASA Langley Research Center in which a UAS rotor was tested inside a small anechoic wind tunnel. Acoustic signatures were obtained with the downwash exhausting down the wind tunnel, and with the tunnel exhaust plugged forcing flow recirculation. Several methods to mitigate the acoustic impacts of flow recirculation were then employed with the wind tunnel in the plugged configuration. The effectiveness of the mitigation strategies are discussed, along with implications for future testing and standards development.
doi_str_mv 10.1121/1.5068062
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1121_1_5068062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692-36658a3d2a0871518c658930d53a7264e505dd532215bb98b8b1e6f298d9255f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqUw8A-8gpTi59SuPaKKL6mIpXvkOC-NUeJUeQap_x5DOzNdnaujO1zGbkEsACQ8wEIJbYSWZ2wGSorCKLk8ZzMhBBRLq_UluyL6zKhMaWesfQ8p7FwKccdTh3wfUuv6nvjY8oT013_FwcWIDXc4BddzOlDCgX9jF3yPxF1suB-H_RgxJuIh5gZ9NwbPfeeGGie6Zhd5lvDmlHO2fX7arl-LzcfL2_pxU3htZVFqrYwrG-mEWYEC4zPbUjSqdCupl6iEajJICaquralNDahbaU1jpVJtOWd3x1k_jUQTttV-CoObDhWI6vefCqrTP9m9P7rkQ8oHjPEf-Qeq_mVf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mitigating the pitfalls of testing unmanned aerial system vehicles and components in anechoic chambers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Stephenson, James H. ; Weitsman, Daniel ; Zawodny, Nikolas S.</creator><creatorcontrib>Stephenson, James H. ; Weitsman, Daniel ; Zawodny, Nikolas S.</creatorcontrib><description>Flow recirculation is known to develop inside a closed anechoic chamber when testing unmanned aerial system (UAS) rotor components and vehicles. This flow recirculation modifies the inflow through the vehicle’s rotors, which results in significant impacts to the measured acoustic signature. A measurement campaign was undertaken at NASA Langley Research Center in which a UAS rotor was tested inside a small anechoic wind tunnel. Acoustic signatures were obtained with the downwash exhausting down the wind tunnel, and with the tunnel exhaust plugged forcing flow recirculation. Several methods to mitigate the acoustic impacts of flow recirculation were then employed with the wind tunnel in the plugged configuration. The effectiveness of the mitigation strategies are discussed, along with implications for future testing and standards development.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.5068062</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2018-09, Vol.144 (3), p.1830-1830</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.5068062$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1564,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Stephenson, James H.</creatorcontrib><creatorcontrib>Weitsman, Daniel</creatorcontrib><creatorcontrib>Zawodny, Nikolas S.</creatorcontrib><title>Mitigating the pitfalls of testing unmanned aerial system vehicles and components in anechoic chambers</title><title>The Journal of the Acoustical Society of America</title><description>Flow recirculation is known to develop inside a closed anechoic chamber when testing unmanned aerial system (UAS) rotor components and vehicles. This flow recirculation modifies the inflow through the vehicle’s rotors, which results in significant impacts to the measured acoustic signature. A measurement campaign was undertaken at NASA Langley Research Center in which a UAS rotor was tested inside a small anechoic wind tunnel. Acoustic signatures were obtained with the downwash exhausting down the wind tunnel, and with the tunnel exhaust plugged forcing flow recirculation. Several methods to mitigate the acoustic impacts of flow recirculation were then employed with the wind tunnel in the plugged configuration. The effectiveness of the mitigation strategies are discussed, along with implications for future testing and standards development.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqUw8A-8gpTi59SuPaKKL6mIpXvkOC-NUeJUeQap_x5DOzNdnaujO1zGbkEsACQ8wEIJbYSWZ2wGSorCKLk8ZzMhBBRLq_UluyL6zKhMaWesfQ8p7FwKccdTh3wfUuv6nvjY8oT013_FwcWIDXc4BddzOlDCgX9jF3yPxF1suB-H_RgxJuIh5gZ9NwbPfeeGGie6Zhd5lvDmlHO2fX7arl-LzcfL2_pxU3htZVFqrYwrG-mEWYEC4zPbUjSqdCupl6iEajJICaquralNDahbaU1jpVJtOWd3x1k_jUQTttV-CoObDhWI6vefCqrTP9m9P7rkQ8oHjPEf-Qeq_mVf</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Stephenson, James H.</creator><creator>Weitsman, Daniel</creator><creator>Zawodny, Nikolas S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201809</creationdate><title>Mitigating the pitfalls of testing unmanned aerial system vehicles and components in anechoic chambers</title><author>Stephenson, James H. ; Weitsman, Daniel ; Zawodny, Nikolas S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692-36658a3d2a0871518c658930d53a7264e505dd532215bb98b8b1e6f298d9255f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephenson, James H.</creatorcontrib><creatorcontrib>Weitsman, Daniel</creatorcontrib><creatorcontrib>Zawodny, Nikolas S.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephenson, James H.</au><au>Weitsman, Daniel</au><au>Zawodny, Nikolas S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating the pitfalls of testing unmanned aerial system vehicles and components in anechoic chambers</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2018-09</date><risdate>2018</risdate><volume>144</volume><issue>3</issue><spage>1830</spage><epage>1830</epage><pages>1830-1830</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Flow recirculation is known to develop inside a closed anechoic chamber when testing unmanned aerial system (UAS) rotor components and vehicles. This flow recirculation modifies the inflow through the vehicle’s rotors, which results in significant impacts to the measured acoustic signature. A measurement campaign was undertaken at NASA Langley Research Center in which a UAS rotor was tested inside a small anechoic wind tunnel. Acoustic signatures were obtained with the downwash exhausting down the wind tunnel, and with the tunnel exhaust plugged forcing flow recirculation. Several methods to mitigate the acoustic impacts of flow recirculation were then employed with the wind tunnel in the plugged configuration. The effectiveness of the mitigation strategies are discussed, along with implications for future testing and standards development.</abstract><doi>10.1121/1.5068062</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2018-09, Vol.144 (3), p.1830-1830
issn 0001-4966
1520-8524
language eng
recordid cdi_scitation_primary_10_1121_1_5068062
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Mitigating the pitfalls of testing unmanned aerial system vehicles and components in anechoic chambers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20the%20pitfalls%20of%20testing%20unmanned%20aerial%20system%20vehicles%20and%20components%20in%20anechoic%20chambers&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Stephenson,%20James%20H.&rft.date=2018-09&rft.volume=144&rft.issue=3&rft.spage=1830&rft.epage=1830&rft.pages=1830-1830&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.5068062&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true