The effect of resonance on transient microbubble acoustic response: Experimental observations and numerical simulations

A large number of acoustic signals from single lipid-shelled Definity® (Lantheus Medical Imaging, N. Billerica, MA) microbubbles have been measured using a calibrated microacoustic system, and a unique transient characteristic of resonance has been identified in the onset of scatter. Comparison of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2018-03, Vol.143 (3), p.1392-1406
Hauptverfasser: Efthymiou, K., Pelekasis, N., Butler, M. B., Thomas, D. H., Sboros, V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1406
container_issue 3
container_start_page 1392
container_title The Journal of the Acoustical Society of America
container_volume 143
creator Efthymiou, K.
Pelekasis, N.
Butler, M. B.
Thomas, D. H.
Sboros, V.
description A large number of acoustic signals from single lipid-shelled Definity® (Lantheus Medical Imaging, N. Billerica, MA) microbubbles have been measured using a calibrated microacoustic system, and a unique transient characteristic of resonance has been identified in the onset of scatter. Comparison of the numerically obtained response of microbubbles with acoustic measurements provides good agreement for a soft shell that is characterized by small area dilatation modulus and strain softening behavior, and identifies time to maximum radial excursion and scatter as a robust marker of resonance during transient response. As the sound amplitude increases a two-population pattern emerges in the time delay vs the fundamental acoustic scatter plots, consisting of an initial part pertaining to microbubbles with less than resonant rest radii, which corresponds to the weaker second harmonic resonance, and the dominant resonant envelope pertaining to microbubbles with resonant and greater than resonant rest radii, which corresponds to the primary and subharmonic resonances. Consequently, a wider resonant spectrum is observed. It is a result of the strain softening nature of soft lipid shells, based on which the microbubble sizes corresponding to the above resonances decrease as the sound amplitude increases. This bares an impact on the selection of an optimal microbubble size pertaining to subharmonic imaging.
doi_str_mv 10.1121/1.5026021
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1121_1_5026021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020892858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-67466e696c5cc012ae15ac7549e7e945731317983dfa8df2f58580a54ea1d6823</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqVw4AWQj4CUYjuxk3BDVfmRKnEp58hx1iIosYOdFHh7XFLgBKfVar4d7QxCp5TMKWX0is45YYIwuoemlDMSZZwl-2hKCKFRkgsxQUfev4SVZ3F-iCYsFyQRIpmit_UzYNAaVI-txg68NdIowNbg3knjazA9bmvlbDmUZQNYKjv4vlZbtrPGwzVevnfg6jaQssG29OA2sq-DhqWpsBnaoKog-bodmlE5RgdaNh5OdnOGnm6X68V9tHq8e1jcrCIVc95HIg1vgsiF4koRyiRQLlXKkxxSyBOexjSmaZ7FlZZZpZnmGc-I5AlIWomMxTN0Pvp2zr4O4Puirb2CppEGQo6CEUaynIWrgF6MaMjqvQNddCGUdB8FJcW254IWu54De7azHcoWqh_yu9gAXI6AV3X_Fflftz_hjXW_YNFVOv4EwdWVgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020892858</pqid></control><display><type>article</type><title>The effect of resonance on transient microbubble acoustic response: Experimental observations and numerical simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Efthymiou, K. ; Pelekasis, N. ; Butler, M. B. ; Thomas, D. H. ; Sboros, V.</creator><creatorcontrib>Efthymiou, K. ; Pelekasis, N. ; Butler, M. B. ; Thomas, D. H. ; Sboros, V.</creatorcontrib><description>A large number of acoustic signals from single lipid-shelled Definity® (Lantheus Medical Imaging, N. Billerica, MA) microbubbles have been measured using a calibrated microacoustic system, and a unique transient characteristic of resonance has been identified in the onset of scatter. Comparison of the numerically obtained response of microbubbles with acoustic measurements provides good agreement for a soft shell that is characterized by small area dilatation modulus and strain softening behavior, and identifies time to maximum radial excursion and scatter as a robust marker of resonance during transient response. As the sound amplitude increases a two-population pattern emerges in the time delay vs the fundamental acoustic scatter plots, consisting of an initial part pertaining to microbubbles with less than resonant rest radii, which corresponds to the weaker second harmonic resonance, and the dominant resonant envelope pertaining to microbubbles with resonant and greater than resonant rest radii, which corresponds to the primary and subharmonic resonances. Consequently, a wider resonant spectrum is observed. It is a result of the strain softening nature of soft lipid shells, based on which the microbubble sizes corresponding to the above resonances decrease as the sound amplitude increases. This bares an impact on the selection of an optimal microbubble size pertaining to subharmonic imaging.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.5026021</identifier><identifier>PMID: 29604664</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of the Acoustical Society of America, 2018-03, Vol.143 (3), p.1392-1406</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-67466e696c5cc012ae15ac7549e7e945731317983dfa8df2f58580a54ea1d6823</citedby><cites>FETCH-LOGICAL-c355t-67466e696c5cc012ae15ac7549e7e945731317983dfa8df2f58580a54ea1d6823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.5026021$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,777,781,791,1560,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29604664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Efthymiou, K.</creatorcontrib><creatorcontrib>Pelekasis, N.</creatorcontrib><creatorcontrib>Butler, M. B.</creatorcontrib><creatorcontrib>Thomas, D. H.</creatorcontrib><creatorcontrib>Sboros, V.</creatorcontrib><title>The effect of resonance on transient microbubble acoustic response: Experimental observations and numerical simulations</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>A large number of acoustic signals from single lipid-shelled Definity® (Lantheus Medical Imaging, N. Billerica, MA) microbubbles have been measured using a calibrated microacoustic system, and a unique transient characteristic of resonance has been identified in the onset of scatter. Comparison of the numerically obtained response of microbubbles with acoustic measurements provides good agreement for a soft shell that is characterized by small area dilatation modulus and strain softening behavior, and identifies time to maximum radial excursion and scatter as a robust marker of resonance during transient response. As the sound amplitude increases a two-population pattern emerges in the time delay vs the fundamental acoustic scatter plots, consisting of an initial part pertaining to microbubbles with less than resonant rest radii, which corresponds to the weaker second harmonic resonance, and the dominant resonant envelope pertaining to microbubbles with resonant and greater than resonant rest radii, which corresponds to the primary and subharmonic resonances. Consequently, a wider resonant spectrum is observed. It is a result of the strain softening nature of soft lipid shells, based on which the microbubble sizes corresponding to the above resonances decrease as the sound amplitude increases. This bares an impact on the selection of an optimal microbubble size pertaining to subharmonic imaging.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EoqVw4AWQj4CUYjuxk3BDVfmRKnEp58hx1iIosYOdFHh7XFLgBKfVar4d7QxCp5TMKWX0is45YYIwuoemlDMSZZwl-2hKCKFRkgsxQUfev4SVZ3F-iCYsFyQRIpmit_UzYNAaVI-txg68NdIowNbg3knjazA9bmvlbDmUZQNYKjv4vlZbtrPGwzVevnfg6jaQssG29OA2sq-DhqWpsBnaoKog-bodmlE5RgdaNh5OdnOGnm6X68V9tHq8e1jcrCIVc95HIg1vgsiF4koRyiRQLlXKkxxSyBOexjSmaZ7FlZZZpZnmGc-I5AlIWomMxTN0Pvp2zr4O4Puirb2CppEGQo6CEUaynIWrgF6MaMjqvQNddCGUdB8FJcW254IWu54De7azHcoWqh_yu9gAXI6AV3X_Fflftz_hjXW_YNFVOv4EwdWVgQ</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Efthymiou, K.</creator><creator>Pelekasis, N.</creator><creator>Butler, M. B.</creator><creator>Thomas, D. H.</creator><creator>Sboros, V.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>The effect of resonance on transient microbubble acoustic response: Experimental observations and numerical simulations</title><author>Efthymiou, K. ; Pelekasis, N. ; Butler, M. B. ; Thomas, D. H. ; Sboros, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-67466e696c5cc012ae15ac7549e7e945731317983dfa8df2f58580a54ea1d6823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efthymiou, K.</creatorcontrib><creatorcontrib>Pelekasis, N.</creatorcontrib><creatorcontrib>Butler, M. B.</creatorcontrib><creatorcontrib>Thomas, D. H.</creatorcontrib><creatorcontrib>Sboros, V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efthymiou, K.</au><au>Pelekasis, N.</au><au>Butler, M. B.</au><au>Thomas, D. H.</au><au>Sboros, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of resonance on transient microbubble acoustic response: Experimental observations and numerical simulations</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2018-03</date><risdate>2018</risdate><volume>143</volume><issue>3</issue><spage>1392</spage><epage>1406</epage><pages>1392-1406</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>A large number of acoustic signals from single lipid-shelled Definity® (Lantheus Medical Imaging, N. Billerica, MA) microbubbles have been measured using a calibrated microacoustic system, and a unique transient characteristic of resonance has been identified in the onset of scatter. Comparison of the numerically obtained response of microbubbles with acoustic measurements provides good agreement for a soft shell that is characterized by small area dilatation modulus and strain softening behavior, and identifies time to maximum radial excursion and scatter as a robust marker of resonance during transient response. As the sound amplitude increases a two-population pattern emerges in the time delay vs the fundamental acoustic scatter plots, consisting of an initial part pertaining to microbubbles with less than resonant rest radii, which corresponds to the weaker second harmonic resonance, and the dominant resonant envelope pertaining to microbubbles with resonant and greater than resonant rest radii, which corresponds to the primary and subharmonic resonances. Consequently, a wider resonant spectrum is observed. It is a result of the strain softening nature of soft lipid shells, based on which the microbubble sizes corresponding to the above resonances decrease as the sound amplitude increases. This bares an impact on the selection of an optimal microbubble size pertaining to subharmonic imaging.</abstract><cop>United States</cop><pmid>29604664</pmid><doi>10.1121/1.5026021</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2018-03, Vol.143 (3), p.1392-1406
issn 0001-4966
1520-8524
language eng
recordid cdi_scitation_primary_10_1121_1_5026021
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title The effect of resonance on transient microbubble acoustic response: Experimental observations and numerical simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20resonance%20on%20transient%20microbubble%20acoustic%20response:%20Experimental%20observations%20and%20numerical%20simulations&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Efthymiou,%20K.&rft.date=2018-03&rft.volume=143&rft.issue=3&rft.spage=1392&rft.epage=1406&rft.pages=1392-1406&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.5026021&rft_dat=%3Cproquest_scita%3E2020892858%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020892858&rft_id=info:pmid/29604664&rfr_iscdi=true