Revisiting the Cremer impedance

In a classical paper (Acustica 3, 1953), Cremer demonstrated that in a rectangular duct, with locally reacting walls, there exits an impedance (“the Cremer impedance”) that maximizes the propagational damping for the lowest mode. Later (JSV 28, 1973), Tester extended the analysis to include a plug f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2017-05, Vol.141 (5), p.3554-3554
Hauptverfasser: Kabral, Raimo, Åbom, Mats, Nilsson, Börje
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3554
container_issue 5
container_start_page 3554
container_title The Journal of the Acoustical Society of America
container_volume 141
creator Kabral, Raimo
Åbom, Mats
Nilsson, Börje
description In a classical paper (Acustica 3, 1953), Cremer demonstrated that in a rectangular duct, with locally reacting walls, there exits an impedance (“the Cremer impedance”) that maximizes the propagational damping for the lowest mode. Later (JSV 28, 1973), Tester extended the analysis to include a plug flow and ducts of both circular and rectangular cross-section. One limitation in the work of Tester is that it simplified the analysis of the effect of flow only considering high frequencies or well cut-on modes. This approximation is reasonable for large duct applications, e.g., aeroengines, but not for many other cases of interest. Kabral et al. (Acta Acustica united with Acustica 102, 2016) removed this limitation and investigated the exact Cremer impedance including flow effects. As demonstrated in that paper the exact solution exhibits some special properties at low frequencies, e.g., a negative real part of the wall impedance. In this paper, the exact Cremer impedance is further analyzed and discussed.
doi_str_mv 10.1121/1.4987531
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1121_1_4987531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691-1de4f81a77949e5983fb35b7521fcc29f57a5d52b07abdb315f04112fe2b6dd23</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEcX_gK7VeiYl-Q1zVKKo8KAILMv-XjRiO0MSRH8947MrF1dLhwu9zB2DXwJIOAelsp0GiWcsApQ8KZDoU5ZxTmHRpm2PWcXpXzuK3bSVOzmjb5TSXOa3uv5g-o-00i5TuOOgp08XbKzaL8KXR1zwTarx03_3Kxfn176h3XjWwMNBFKxA6u1UYbQdDI6iU6jgOi9MBG1xYDCcW1dcBIwcrX_G0m4NgQhF-z2MOvztpRMcdjlNNr8MwAf_sQGGI5ie_buwBafZjun7fQP_AskOUvB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Revisiting the Cremer impedance</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Kabral, Raimo ; Åbom, Mats ; Nilsson, Börje</creator><creatorcontrib>Kabral, Raimo ; Åbom, Mats ; Nilsson, Börje</creatorcontrib><description>In a classical paper (Acustica 3, 1953), Cremer demonstrated that in a rectangular duct, with locally reacting walls, there exits an impedance (“the Cremer impedance”) that maximizes the propagational damping for the lowest mode. Later (JSV 28, 1973), Tester extended the analysis to include a plug flow and ducts of both circular and rectangular cross-section. One limitation in the work of Tester is that it simplified the analysis of the effect of flow only considering high frequencies or well cut-on modes. This approximation is reasonable for large duct applications, e.g., aeroengines, but not for many other cases of interest. Kabral et al. (Acta Acustica united with Acustica 102, 2016) removed this limitation and investigated the exact Cremer impedance including flow effects. As demonstrated in that paper the exact solution exhibits some special properties at low frequencies, e.g., a negative real part of the wall impedance. In this paper, the exact Cremer impedance is further analyzed and discussed.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4987531</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2017-05, Vol.141 (5), p.3554-3554</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.4987531$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Kabral, Raimo</creatorcontrib><creatorcontrib>Åbom, Mats</creatorcontrib><creatorcontrib>Nilsson, Börje</creatorcontrib><title>Revisiting the Cremer impedance</title><title>The Journal of the Acoustical Society of America</title><description>In a classical paper (Acustica 3, 1953), Cremer demonstrated that in a rectangular duct, with locally reacting walls, there exits an impedance (“the Cremer impedance”) that maximizes the propagational damping for the lowest mode. Later (JSV 28, 1973), Tester extended the analysis to include a plug flow and ducts of both circular and rectangular cross-section. One limitation in the work of Tester is that it simplified the analysis of the effect of flow only considering high frequencies or well cut-on modes. This approximation is reasonable for large duct applications, e.g., aeroengines, but not for many other cases of interest. Kabral et al. (Acta Acustica united with Acustica 102, 2016) removed this limitation and investigated the exact Cremer impedance including flow effects. As demonstrated in that paper the exact solution exhibits some special properties at low frequencies, e.g., a negative real part of the wall impedance. In this paper, the exact Cremer impedance is further analyzed and discussed.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEcX_gK7VeiYl-Q1zVKKo8KAILMv-XjRiO0MSRH8947MrF1dLhwu9zB2DXwJIOAelsp0GiWcsApQ8KZDoU5ZxTmHRpm2PWcXpXzuK3bSVOzmjb5TSXOa3uv5g-o-00i5TuOOgp08XbKzaL8KXR1zwTarx03_3Kxfn176h3XjWwMNBFKxA6u1UYbQdDI6iU6jgOi9MBG1xYDCcW1dcBIwcrX_G0m4NgQhF-z2MOvztpRMcdjlNNr8MwAf_sQGGI5ie_buwBafZjun7fQP_AskOUvB</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Kabral, Raimo</creator><creator>Åbom, Mats</creator><creator>Nilsson, Börje</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201705</creationdate><title>Revisiting the Cremer impedance</title><author>Kabral, Raimo ; Åbom, Mats ; Nilsson, Börje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691-1de4f81a77949e5983fb35b7521fcc29f57a5d52b07abdb315f04112fe2b6dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabral, Raimo</creatorcontrib><creatorcontrib>Åbom, Mats</creatorcontrib><creatorcontrib>Nilsson, Börje</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabral, Raimo</au><au>Åbom, Mats</au><au>Nilsson, Börje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Cremer impedance</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2017-05</date><risdate>2017</risdate><volume>141</volume><issue>5</issue><spage>3554</spage><epage>3554</epage><pages>3554-3554</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>In a classical paper (Acustica 3, 1953), Cremer demonstrated that in a rectangular duct, with locally reacting walls, there exits an impedance (“the Cremer impedance”) that maximizes the propagational damping for the lowest mode. Later (JSV 28, 1973), Tester extended the analysis to include a plug flow and ducts of both circular and rectangular cross-section. One limitation in the work of Tester is that it simplified the analysis of the effect of flow only considering high frequencies or well cut-on modes. This approximation is reasonable for large duct applications, e.g., aeroengines, but not for many other cases of interest. Kabral et al. (Acta Acustica united with Acustica 102, 2016) removed this limitation and investigated the exact Cremer impedance including flow effects. As demonstrated in that paper the exact solution exhibits some special properties at low frequencies, e.g., a negative real part of the wall impedance. In this paper, the exact Cremer impedance is further analyzed and discussed.</abstract><doi>10.1121/1.4987531</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2017-05, Vol.141 (5), p.3554-3554
issn 0001-4966
1520-8524
language eng
recordid cdi_scitation_primary_10_1121_1_4987531
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Revisiting the Cremer impedance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Cremer%20impedance&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Kabral,%20Raimo&rft.date=2017-05&rft.volume=141&rft.issue=5&rft.spage=3554&rft.epage=3554&rft.pages=3554-3554&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.4987531&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true