Revisiting the Cremer impedance
In a classical paper (Acustica 3, 1953), Cremer demonstrated that in a rectangular duct, with locally reacting walls, there exits an impedance (“the Cremer impedance”) that maximizes the propagational damping for the lowest mode. Later (JSV 28, 1973), Tester extended the analysis to include a plug f...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2017-05, Vol.141 (5), p.3554-3554 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3554 |
---|---|
container_issue | 5 |
container_start_page | 3554 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 141 |
creator | Kabral, Raimo Åbom, Mats Nilsson, Börje |
description | In a classical paper (Acustica 3, 1953), Cremer demonstrated that in a rectangular duct, with locally reacting walls, there exits an impedance (“the Cremer impedance”) that maximizes the propagational damping for the lowest mode. Later (JSV 28, 1973), Tester extended the analysis to include a plug flow and ducts of both circular and rectangular cross-section. One limitation in the work of Tester is that it simplified the analysis of the effect of flow only considering high frequencies or well cut-on modes. This approximation is reasonable for large duct applications, e.g., aeroengines, but not for many other cases of interest. Kabral et al. (Acta Acustica united with Acustica 102, 2016) removed this limitation and investigated the exact Cremer impedance including flow effects. As demonstrated in that paper the exact solution exhibits some special properties at low frequencies, e.g., a negative real part of the wall impedance. In this paper, the exact Cremer impedance is further analyzed and discussed. |
doi_str_mv | 10.1121/1.4987531 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1121_1_4987531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691-1de4f81a77949e5983fb35b7521fcc29f57a5d52b07abdb315f04112fe2b6dd23</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEcX_gK7VeiYl-Q1zVKKo8KAILMv-XjRiO0MSRH8947MrF1dLhwu9zB2DXwJIOAelsp0GiWcsApQ8KZDoU5ZxTmHRpm2PWcXpXzuK3bSVOzmjb5TSXOa3uv5g-o-00i5TuOOgp08XbKzaL8KXR1zwTarx03_3Kxfn176h3XjWwMNBFKxA6u1UYbQdDI6iU6jgOi9MBG1xYDCcW1dcBIwcrX_G0m4NgQhF-z2MOvztpRMcdjlNNr8MwAf_sQGGI5ie_buwBafZjun7fQP_AskOUvB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Revisiting the Cremer impedance</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Kabral, Raimo ; Åbom, Mats ; Nilsson, Börje</creator><creatorcontrib>Kabral, Raimo ; Åbom, Mats ; Nilsson, Börje</creatorcontrib><description>In a classical paper (Acustica 3, 1953), Cremer demonstrated that in a rectangular duct, with locally reacting walls, there exits an impedance (“the Cremer impedance”) that maximizes the propagational damping for the lowest mode. Later (JSV 28, 1973), Tester extended the analysis to include a plug flow and ducts of both circular and rectangular cross-section. One limitation in the work of Tester is that it simplified the analysis of the effect of flow only considering high frequencies or well cut-on modes. This approximation is reasonable for large duct applications, e.g., aeroengines, but not for many other cases of interest. Kabral et al. (Acta Acustica united with Acustica 102, 2016) removed this limitation and investigated the exact Cremer impedance including flow effects. As demonstrated in that paper the exact solution exhibits some special properties at low frequencies, e.g., a negative real part of the wall impedance. In this paper, the exact Cremer impedance is further analyzed and discussed.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4987531</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2017-05, Vol.141 (5), p.3554-3554</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.4987531$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Kabral, Raimo</creatorcontrib><creatorcontrib>Åbom, Mats</creatorcontrib><creatorcontrib>Nilsson, Börje</creatorcontrib><title>Revisiting the Cremer impedance</title><title>The Journal of the Acoustical Society of America</title><description>In a classical paper (Acustica 3, 1953), Cremer demonstrated that in a rectangular duct, with locally reacting walls, there exits an impedance (“the Cremer impedance”) that maximizes the propagational damping for the lowest mode. Later (JSV 28, 1973), Tester extended the analysis to include a plug flow and ducts of both circular and rectangular cross-section. One limitation in the work of Tester is that it simplified the analysis of the effect of flow only considering high frequencies or well cut-on modes. This approximation is reasonable for large duct applications, e.g., aeroengines, but not for many other cases of interest. Kabral et al. (Acta Acustica united with Acustica 102, 2016) removed this limitation and investigated the exact Cremer impedance including flow effects. As demonstrated in that paper the exact solution exhibits some special properties at low frequencies, e.g., a negative real part of the wall impedance. In this paper, the exact Cremer impedance is further analyzed and discussed.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEcX_gK7VeiYl-Q1zVKKo8KAILMv-XjRiO0MSRH8947MrF1dLhwu9zB2DXwJIOAelsp0GiWcsApQ8KZDoU5ZxTmHRpm2PWcXpXzuK3bSVOzmjb5TSXOa3uv5g-o-00i5TuOOgp08XbKzaL8KXR1zwTarx03_3Kxfn176h3XjWwMNBFKxA6u1UYbQdDI6iU6jgOi9MBG1xYDCcW1dcBIwcrX_G0m4NgQhF-z2MOvztpRMcdjlNNr8MwAf_sQGGI5ie_buwBafZjun7fQP_AskOUvB</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Kabral, Raimo</creator><creator>Åbom, Mats</creator><creator>Nilsson, Börje</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201705</creationdate><title>Revisiting the Cremer impedance</title><author>Kabral, Raimo ; Åbom, Mats ; Nilsson, Börje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691-1de4f81a77949e5983fb35b7521fcc29f57a5d52b07abdb315f04112fe2b6dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabral, Raimo</creatorcontrib><creatorcontrib>Åbom, Mats</creatorcontrib><creatorcontrib>Nilsson, Börje</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabral, Raimo</au><au>Åbom, Mats</au><au>Nilsson, Börje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Cremer impedance</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2017-05</date><risdate>2017</risdate><volume>141</volume><issue>5</issue><spage>3554</spage><epage>3554</epage><pages>3554-3554</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>In a classical paper (Acustica 3, 1953), Cremer demonstrated that in a rectangular duct, with locally reacting walls, there exits an impedance (“the Cremer impedance”) that maximizes the propagational damping for the lowest mode. Later (JSV 28, 1973), Tester extended the analysis to include a plug flow and ducts of both circular and rectangular cross-section. One limitation in the work of Tester is that it simplified the analysis of the effect of flow only considering high frequencies or well cut-on modes. This approximation is reasonable for large duct applications, e.g., aeroengines, but not for many other cases of interest. Kabral et al. (Acta Acustica united with Acustica 102, 2016) removed this limitation and investigated the exact Cremer impedance including flow effects. As demonstrated in that paper the exact solution exhibits some special properties at low frequencies, e.g., a negative real part of the wall impedance. In this paper, the exact Cremer impedance is further analyzed and discussed.</abstract><doi>10.1121/1.4987531</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2017-05, Vol.141 (5), p.3554-3554 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_scitation_primary_10_1121_1_4987531 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
title | Revisiting the Cremer impedance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Cremer%20impedance&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Kabral,%20Raimo&rft.date=2017-05&rft.volume=141&rft.issue=5&rft.spage=3554&rft.epage=3554&rft.pages=3554-3554&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.4987531&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |