Acoustical gas-leak detection in the presence of multiple reflections, dispersion, and uncorrelated noise using optimized residual complexity

Precise acoustical leak detection calls for robust time-delay estimates, which minimize the probability of false alarms in the face of dispersive propagation, multiple reflections, and uncorrelated background noise. Providing evidence that higher order modes and multi-reflected signals behave like s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2016-09, Vol.140 (3), p.1817-1827
Hauptverfasser: Ahmadi, A. M., Amjadi, A., Bahrampour, A. R., Ravanbod, H., Tofighi, S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1827
container_issue 3
container_start_page 1817
container_title The Journal of the Acoustical Society of America
container_volume 140
creator Ahmadi, A. M.
Amjadi, A.
Bahrampour, A. R.
Ravanbod, H.
Tofighi, S.
description Precise acoustical leak detection calls for robust time-delay estimates, which minimize the probability of false alarms in the face of dispersive propagation, multiple reflections, and uncorrelated background noise. Providing evidence that higher order modes and multi-reflected signals behave like sets of correlated noise, this work uses a regression model to optimize residual complexity in the presence of both correlated and uncorrelated noise. This optimized residual complexity (ORC) is highly robust since it takes into account both the level and complexity of noise. The lower complexity of the dispersive modes and multiple reflections, compared to the complexity of the plane mode, points to the robustness of ORC against multiple reflections and dispersion. Experimental investigations using recorded sounds of gas leaking from a pipe confirm the robustness of ORC against multiple reflections. Numerical simulations also show robustness against dispersive modes, even when they disturb the linearity of the cross-spectrum phase. Comparisons with other methods—mutual information, cross correlation, and residual complexity—underline the general advantages of ORC in terms of robustness in the presence of reflection and dispersion, against both correlated and uncorrelated noise, and to short signals.
doi_str_mv 10.1121/1.4962482
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1121_1_4962482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1846028847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-fad2aef4e1b766e9209189be61c5c1f2079aa38a92ddc18e2a2ba0094660ba453</originalsourceid><addsrcrecordid>eNp9kMFOFTEUQBsjkSe64AdIl2oYbDudmXZJCAgJiRtdT-60d6DamQ5th4j_wD9T8p66klVz25PT3EPIIWcnnAv-mZ9I3QqpxCuy4Y1glWqEfE02jDFelad2n7xN6UcZG1XrN2RfdJpLKbsNeTw1YU3ZGfD0BlLlEX5SixlNdmGmbqb5FukSMeFskIaRTqvPbvFII45-i6Vjal1aMKYyHFOYLV1nE2JEDxktnYNLSNfk5hsaluwm97vcFqeza_nXhKn4frn88I7sjeATvt-dB-T7xfm3s8vq-uuXq7PT68rUTZOrEawAHCXyoWtb1IJprvSALTeN4aNgnQaoFWhhreEKBYgBGNOybdkAsqkPyIetd4nhbsWU-8klg97DjCVHz5VsmVBKdgX9uEVNDCmVnfslugniQ89Z_1y_5_2ufmGPdtp1mND-Jf_kLsCnLZCMy_Cc7kXbf-H7EP-B_WLH-gkMop7O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846028847</pqid></control><display><type>article</type><title>Acoustical gas-leak detection in the presence of multiple reflections, dispersion, and uncorrelated noise using optimized residual complexity</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Ahmadi, A. M. ; Amjadi, A. ; Bahrampour, A. R. ; Ravanbod, H. ; Tofighi, S.</creator><creatorcontrib>Ahmadi, A. M. ; Amjadi, A. ; Bahrampour, A. R. ; Ravanbod, H. ; Tofighi, S.</creatorcontrib><description>Precise acoustical leak detection calls for robust time-delay estimates, which minimize the probability of false alarms in the face of dispersive propagation, multiple reflections, and uncorrelated background noise. Providing evidence that higher order modes and multi-reflected signals behave like sets of correlated noise, this work uses a regression model to optimize residual complexity in the presence of both correlated and uncorrelated noise. This optimized residual complexity (ORC) is highly robust since it takes into account both the level and complexity of noise. The lower complexity of the dispersive modes and multiple reflections, compared to the complexity of the plane mode, points to the robustness of ORC against multiple reflections and dispersion. Experimental investigations using recorded sounds of gas leaking from a pipe confirm the robustness of ORC against multiple reflections. Numerical simulations also show robustness against dispersive modes, even when they disturb the linearity of the cross-spectrum phase. Comparisons with other methods—mutual information, cross correlation, and residual complexity—underline the general advantages of ORC in terms of robustness in the presence of reflection and dispersion, against both correlated and uncorrelated noise, and to short signals.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4962482</identifier><identifier>PMID: 27914447</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of the Acoustical Society of America, 2016-09, Vol.140 (3), p.1817-1827</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-fad2aef4e1b766e9209189be61c5c1f2079aa38a92ddc18e2a2ba0094660ba453</citedby><cites>FETCH-LOGICAL-c355t-fad2aef4e1b766e9209189be61c5c1f2079aa38a92ddc18e2a2ba0094660ba453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.4962482$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27914447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmadi, A. M.</creatorcontrib><creatorcontrib>Amjadi, A.</creatorcontrib><creatorcontrib>Bahrampour, A. R.</creatorcontrib><creatorcontrib>Ravanbod, H.</creatorcontrib><creatorcontrib>Tofighi, S.</creatorcontrib><title>Acoustical gas-leak detection in the presence of multiple reflections, dispersion, and uncorrelated noise using optimized residual complexity</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Precise acoustical leak detection calls for robust time-delay estimates, which minimize the probability of false alarms in the face of dispersive propagation, multiple reflections, and uncorrelated background noise. Providing evidence that higher order modes and multi-reflected signals behave like sets of correlated noise, this work uses a regression model to optimize residual complexity in the presence of both correlated and uncorrelated noise. This optimized residual complexity (ORC) is highly robust since it takes into account both the level and complexity of noise. The lower complexity of the dispersive modes and multiple reflections, compared to the complexity of the plane mode, points to the robustness of ORC against multiple reflections and dispersion. Experimental investigations using recorded sounds of gas leaking from a pipe confirm the robustness of ORC against multiple reflections. Numerical simulations also show robustness against dispersive modes, even when they disturb the linearity of the cross-spectrum phase. Comparisons with other methods—mutual information, cross correlation, and residual complexity—underline the general advantages of ORC in terms of robustness in the presence of reflection and dispersion, against both correlated and uncorrelated noise, and to short signals.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOFTEUQBsjkSe64AdIl2oYbDudmXZJCAgJiRtdT-60d6DamQ5th4j_wD9T8p66klVz25PT3EPIIWcnnAv-mZ9I3QqpxCuy4Y1glWqEfE02jDFelad2n7xN6UcZG1XrN2RfdJpLKbsNeTw1YU3ZGfD0BlLlEX5SixlNdmGmbqb5FukSMeFskIaRTqvPbvFII45-i6Vjal1aMKYyHFOYLV1nE2JEDxktnYNLSNfk5hsaluwm97vcFqeza_nXhKn4frn88I7sjeATvt-dB-T7xfm3s8vq-uuXq7PT68rUTZOrEawAHCXyoWtb1IJprvSALTeN4aNgnQaoFWhhreEKBYgBGNOybdkAsqkPyIetd4nhbsWU-8klg97DjCVHz5VsmVBKdgX9uEVNDCmVnfslugniQ89Z_1y_5_2ufmGPdtp1mND-Jf_kLsCnLZCMy_Cc7kXbf-H7EP-B_WLH-gkMop7O</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Ahmadi, A. M.</creator><creator>Amjadi, A.</creator><creator>Bahrampour, A. R.</creator><creator>Ravanbod, H.</creator><creator>Tofighi, S.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201609</creationdate><title>Acoustical gas-leak detection in the presence of multiple reflections, dispersion, and uncorrelated noise using optimized residual complexity</title><author>Ahmadi, A. M. ; Amjadi, A. ; Bahrampour, A. R. ; Ravanbod, H. ; Tofighi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-fad2aef4e1b766e9209189be61c5c1f2079aa38a92ddc18e2a2ba0094660ba453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, A. M.</creatorcontrib><creatorcontrib>Amjadi, A.</creatorcontrib><creatorcontrib>Bahrampour, A. R.</creatorcontrib><creatorcontrib>Ravanbod, H.</creatorcontrib><creatorcontrib>Tofighi, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, A. M.</au><au>Amjadi, A.</au><au>Bahrampour, A. R.</au><au>Ravanbod, H.</au><au>Tofighi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustical gas-leak detection in the presence of multiple reflections, dispersion, and uncorrelated noise using optimized residual complexity</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2016-09</date><risdate>2016</risdate><volume>140</volume><issue>3</issue><spage>1817</spage><epage>1827</epage><pages>1817-1827</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Precise acoustical leak detection calls for robust time-delay estimates, which minimize the probability of false alarms in the face of dispersive propagation, multiple reflections, and uncorrelated background noise. Providing evidence that higher order modes and multi-reflected signals behave like sets of correlated noise, this work uses a regression model to optimize residual complexity in the presence of both correlated and uncorrelated noise. This optimized residual complexity (ORC) is highly robust since it takes into account both the level and complexity of noise. The lower complexity of the dispersive modes and multiple reflections, compared to the complexity of the plane mode, points to the robustness of ORC against multiple reflections and dispersion. Experimental investigations using recorded sounds of gas leaking from a pipe confirm the robustness of ORC against multiple reflections. Numerical simulations also show robustness against dispersive modes, even when they disturb the linearity of the cross-spectrum phase. Comparisons with other methods—mutual information, cross correlation, and residual complexity—underline the general advantages of ORC in terms of robustness in the presence of reflection and dispersion, against both correlated and uncorrelated noise, and to short signals.</abstract><cop>United States</cop><pmid>27914447</pmid><doi>10.1121/1.4962482</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2016-09, Vol.140 (3), p.1817-1827
issn 0001-4966
1520-8524
language eng
recordid cdi_scitation_primary_10_1121_1_4962482
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Acoustical gas-leak detection in the presence of multiple reflections, dispersion, and uncorrelated noise using optimized residual complexity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustical%20gas-leak%20detection%20in%20the%20presence%20of%20multiple%20reflections,%20dispersion,%20and%20uncorrelated%20noise%20using%20optimized%20residual%20complexity&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Ahmadi,%20A.%20M.&rft.date=2016-09&rft.volume=140&rft.issue=3&rft.spage=1817&rft.epage=1827&rft.pages=1817-1827&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.4962482&rft_dat=%3Cproquest_scita%3E1846028847%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846028847&rft_id=info:pmid/27914447&rfr_iscdi=true