Gaussian closure technique for Bouc's hysteretic model under white noise excitation

Bouc developed a hysteretic model for materials like rubber under dynamic excitation. The response of a hysteretic system under white noise excitation is normally estimated by means of the statistical linearization or a related method. Disadvantages of this method are the assumption of a Gaussian na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Waubke, Holger
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 19
creator Waubke, Holger
description Bouc developed a hysteretic model for materials like rubber under dynamic excitation. The response of a hysteretic system under white noise excitation is normally estimated by means of the statistical linearization or a related method. Disadvantages of this method are the assumption of a Gaussian nature of the random distributions, the high computational efforts caused by the iterations needed and the instability of the iteration in certain parameter regions. Using the assumption of Gaussian random distributions, the Gaussian closure technique can be applied. Analytic solutions of the integrals occurring in this approximation were found and are presented. This solution allows for an explicit time step procedure for the random moments in the transient case. For the stationary case a fast and stable iteration about a set of non linear equations is needed. Both procedures allow to calculate the moments in a fast manner and allow to solve problems with more than one degree of freedom with limited computational efforts.
doi_str_mv 10.1121/1.4799381
format Conference Proceeding
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1121_1_4799381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>poma</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1751-c0dff226a7b43789fa654fd2e3633295b1625c8a3d5fae5e48bedb6ce7ce7b4b3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMgWKsL_yA7QZial0wyM0stWoWCCxXcDZnkhYm0k5pk1P59FSvuhAt3c7gXDiFnwGYAHC5hVlZNI2o4IBNoRFPUjL0ckeOUXhlTwJWckMeFHlPyeqBmFdIYkWY0_eDfRqQuRHodRnOeaL9NGSNmb-g6WFzRcbAY6UfvM9Ih-IQUP43POvswnJBDp1cJT_c9Jc-3N0_zu2L5sLifXy2LBJWEwjDrHOdKV10pqrpxWsnSWY5CCcEb2YHi0tRaWOk0SizrDm2nDFZf6cpOTMnFz276fW430a913LbA2m8FLbR7Bf_B7yH-ge3GOrEDn-tg-g</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gaussian closure technique for Bouc's hysteretic model under white noise excitation</title><source>American Institute of Physics</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Waubke, Holger</creator><creatorcontrib>Waubke, Holger</creatorcontrib><description>Bouc developed a hysteretic model for materials like rubber under dynamic excitation. The response of a hysteretic system under white noise excitation is normally estimated by means of the statistical linearization or a related method. Disadvantages of this method are the assumption of a Gaussian nature of the random distributions, the high computational efforts caused by the iterations needed and the instability of the iteration in certain parameter regions. Using the assumption of Gaussian random distributions, the Gaussian closure technique can be applied. Analytic solutions of the integrals occurring in this approximation were found and are presented. This solution allows for an explicit time step procedure for the random moments in the transient case. For the stationary case a fast and stable iteration about a set of non linear equations is needed. Both procedures allow to calculate the moments in a fast manner and allow to solve problems with more than one degree of freedom with limited computational efforts.</description><identifier>EISSN: 1939-800X</identifier><identifier>DOI: 10.1121/1.4799381</identifier><identifier>CODEN: PMARCW</identifier><language>eng</language><ispartof>Proceedings of Meetings on Acoustics, 2013, Vol.19 (1)</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/poma/article-lookup/doi/10.1121/1.4799381$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>208,309,310,780,784,789,790,794,4512,23930,23931,25140,27925,76384</link.rule.ids></links><search><creatorcontrib>Waubke, Holger</creatorcontrib><title>Gaussian closure technique for Bouc's hysteretic model under white noise excitation</title><title>Proceedings of Meetings on Acoustics</title><description>Bouc developed a hysteretic model for materials like rubber under dynamic excitation. The response of a hysteretic system under white noise excitation is normally estimated by means of the statistical linearization or a related method. Disadvantages of this method are the assumption of a Gaussian nature of the random distributions, the high computational efforts caused by the iterations needed and the instability of the iteration in certain parameter regions. Using the assumption of Gaussian random distributions, the Gaussian closure technique can be applied. Analytic solutions of the integrals occurring in this approximation were found and are presented. This solution allows for an explicit time step procedure for the random moments in the transient case. For the stationary case a fast and stable iteration about a set of non linear equations is needed. Both procedures allow to calculate the moments in a fast manner and allow to solve problems with more than one degree of freedom with limited computational efforts.</description><issn>1939-800X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNp9kMFKAzEURYMgWKsL_yA7QZial0wyM0stWoWCCxXcDZnkhYm0k5pk1P59FSvuhAt3c7gXDiFnwGYAHC5hVlZNI2o4IBNoRFPUjL0ckeOUXhlTwJWckMeFHlPyeqBmFdIYkWY0_eDfRqQuRHodRnOeaL9NGSNmb-g6WFzRcbAY6UfvM9Ih-IQUP43POvswnJBDp1cJT_c9Jc-3N0_zu2L5sLifXy2LBJWEwjDrHOdKV10pqrpxWsnSWY5CCcEb2YHi0tRaWOk0SizrDm2nDFZf6cpOTMnFz276fW430a913LbA2m8FLbR7Bf_B7yH-ge3GOrEDn-tg-g</recordid><startdate>20130602</startdate><enddate>20130602</enddate><creator>Waubke, Holger</creator><scope/></search><sort><creationdate>20130602</creationdate><title>Gaussian closure technique for Bouc's hysteretic model under white noise excitation</title><author>Waubke, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1751-c0dff226a7b43789fa654fd2e3633295b1625c8a3d5fae5e48bedb6ce7ce7b4b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waubke, Holger</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waubke, Holger</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gaussian closure technique for Bouc's hysteretic model under white noise excitation</atitle><btitle>Proceedings of Meetings on Acoustics</btitle><date>2013-06-02</date><risdate>2013</risdate><volume>19</volume><issue>1</issue><eissn>1939-800X</eissn><coden>PMARCW</coden><abstract>Bouc developed a hysteretic model for materials like rubber under dynamic excitation. The response of a hysteretic system under white noise excitation is normally estimated by means of the statistical linearization or a related method. Disadvantages of this method are the assumption of a Gaussian nature of the random distributions, the high computational efforts caused by the iterations needed and the instability of the iteration in certain parameter regions. Using the assumption of Gaussian random distributions, the Gaussian closure technique can be applied. Analytic solutions of the integrals occurring in this approximation were found and are presented. This solution allows for an explicit time step procedure for the random moments in the transient case. For the stationary case a fast and stable iteration about a set of non linear equations is needed. Both procedures allow to calculate the moments in a fast manner and allow to solve problems with more than one degree of freedom with limited computational efforts.</abstract><doi>10.1121/1.4799381</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1939-800X
ispartof Proceedings of Meetings on Acoustics, 2013, Vol.19 (1)
issn 1939-800X
language eng
recordid cdi_scitation_primary_10_1121_1_4799381
source American Institute of Physics; EZB-FREE-00999 freely available EZB journals
title Gaussian closure technique for Bouc's hysteretic model under white noise excitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gaussian%20closure%20technique%20for%20Bouc's%20hysteretic%20model%20under%20white%20noise%20excitation&rft.btitle=Proceedings%20of%20Meetings%20on%20Acoustics&rft.au=Waubke,%20Holger&rft.date=2013-06-02&rft.volume=19&rft.issue=1&rft.eissn=1939-800X&rft.coden=PMARCW&rft_id=info:doi/10.1121/1.4799381&rft_dat=%3Cscitation%3Epoma%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true