Large volume flow rate acoustophoretic phase separator for oil water emulsion splitting

Efficient separation technologies for multi-component liquid streams that eliminate waste and reduce energy consumption are needed. Current technologies suffer from high cost of energy, use of consumables, fouling, and limited separation efficiency of micron-sized particles. We propose a novel platf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dionne, Jason, McCarthy, Brian, Ross-Johnsrud, Ben, Masi, Louis, Lipkens, Bart
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 19
creator Dionne, Jason
McCarthy, Brian
Ross-Johnsrud, Ben
Masi, Louis
Lipkens, Bart
description Efficient separation technologies for multi-component liquid streams that eliminate waste and reduce energy consumption are needed. Current technologies suffer from high cost of energy, use of consumables, fouling, and limited separation efficiency of micron-sized particles. We propose a novel platform technology consisting of a large volume flow rate acoustophoretic phase separator based on ultrasonic standing waves. The acoustic resonator is designed to create a high intensity three dimensional ultrasonic standing wave resulting in an acoustic radiation force that is larger than the combined effects of fluid drag and buoyancy, and is therefore able to trap, i.e., hold stationary, the suspended phase. The action of the acoustic forces on the trapped particles results in concentration, agglomeration and/or coalescence of particles and droplets. Heavier than water particles are separated through enhanced gravitational settling, and lighter particles through enhanced buoyancy. A first prototype consists of a 2" by 1" flow chamber driven by a single 1" by 1" transducer at 2 MHz, with flow rates of 30 L/hr, and measured oil separation efficiencies in excess of 95%. A second prototype is designed to further scale the system to flow rates of 150 L/hr. [Supported by NSF SBIR 1215021 and NSF PFI:BIC 1237723]
doi_str_mv 10.1121/1.4799373
format Conference Proceeding
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1121_1_4799373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>poma</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2813-77664fd0b0f985876957dc7fe4e81b4169d70b20d0350974022f7854649a04ba3</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMguK4e_Ac5C13ffDRpjrL4sVDwouitpG2yG0k3JUl38d9bccGbh2EO8zAMg9ANgRUhlNyRFZdKMcnO0IIopooK4OMCXab0CSAIFeUCvdc6bg0-BD8NBlsfjjjqbLDuwpRyGHchmuw6PO50MjiZUc9xiNjOCs7j4wxHbIbJJxf2OI3e5ez22yt0brVP5vrkS_T2-PC6fi7ql6fN-r4uOloRVkgpBLc9tGBVVVZSqFL2nbSGm4q0nAjVS2gp9MBKUJIDpVZWJRdcaeCtZkt0-9ubOpd1njc0Y3SDjl8NgebnhoY0pxv-gw8h_oHN2Fv2Dcc6YKo</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Large volume flow rate acoustophoretic phase separator for oil water emulsion splitting</title><source>AIP Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dionne, Jason ; McCarthy, Brian ; Ross-Johnsrud, Ben ; Masi, Louis ; Lipkens, Bart</creator><creatorcontrib>Dionne, Jason ; McCarthy, Brian ; Ross-Johnsrud, Ben ; Masi, Louis ; Lipkens, Bart</creatorcontrib><description>Efficient separation technologies for multi-component liquid streams that eliminate waste and reduce energy consumption are needed. Current technologies suffer from high cost of energy, use of consumables, fouling, and limited separation efficiency of micron-sized particles. We propose a novel platform technology consisting of a large volume flow rate acoustophoretic phase separator based on ultrasonic standing waves. The acoustic resonator is designed to create a high intensity three dimensional ultrasonic standing wave resulting in an acoustic radiation force that is larger than the combined effects of fluid drag and buoyancy, and is therefore able to trap, i.e., hold stationary, the suspended phase. The action of the acoustic forces on the trapped particles results in concentration, agglomeration and/or coalescence of particles and droplets. Heavier than water particles are separated through enhanced gravitational settling, and lighter particles through enhanced buoyancy. A first prototype consists of a 2" by 1" flow chamber driven by a single 1" by 1" transducer at 2 MHz, with flow rates of 30 L/hr, and measured oil separation efficiencies in excess of 95%. A second prototype is designed to further scale the system to flow rates of 150 L/hr. [Supported by NSF SBIR 1215021 and NSF PFI:BIC 1237723]</description><identifier>EISSN: 1939-800X</identifier><identifier>DOI: 10.1121/1.4799373</identifier><identifier>CODEN: PMARCW</identifier><language>eng</language><ispartof>Proceedings of Meetings on Acoustics, 2013, Vol.19 (1)</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2813-77664fd0b0f985876957dc7fe4e81b4169d70b20d0350974022f7854649a04ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/poma/article-lookup/doi/10.1121/1.4799373$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>208,310,311,781,785,790,791,795,4051,4052,4513,23935,23936,25145,27930,76389</link.rule.ids></links><search><creatorcontrib>Dionne, Jason</creatorcontrib><creatorcontrib>McCarthy, Brian</creatorcontrib><creatorcontrib>Ross-Johnsrud, Ben</creatorcontrib><creatorcontrib>Masi, Louis</creatorcontrib><creatorcontrib>Lipkens, Bart</creatorcontrib><title>Large volume flow rate acoustophoretic phase separator for oil water emulsion splitting</title><title>Proceedings of Meetings on Acoustics</title><description>Efficient separation technologies for multi-component liquid streams that eliminate waste and reduce energy consumption are needed. Current technologies suffer from high cost of energy, use of consumables, fouling, and limited separation efficiency of micron-sized particles. We propose a novel platform technology consisting of a large volume flow rate acoustophoretic phase separator based on ultrasonic standing waves. The acoustic resonator is designed to create a high intensity three dimensional ultrasonic standing wave resulting in an acoustic radiation force that is larger than the combined effects of fluid drag and buoyancy, and is therefore able to trap, i.e., hold stationary, the suspended phase. The action of the acoustic forces on the trapped particles results in concentration, agglomeration and/or coalescence of particles and droplets. Heavier than water particles are separated through enhanced gravitational settling, and lighter particles through enhanced buoyancy. A first prototype consists of a 2" by 1" flow chamber driven by a single 1" by 1" transducer at 2 MHz, with flow rates of 30 L/hr, and measured oil separation efficiencies in excess of 95%. A second prototype is designed to further scale the system to flow rates of 150 L/hr. [Supported by NSF SBIR 1215021 and NSF PFI:BIC 1237723]</description><issn>1939-800X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNp9kE1LxDAYhIMguK4e_Ac5C13ffDRpjrL4sVDwouitpG2yG0k3JUl38d9bccGbh2EO8zAMg9ANgRUhlNyRFZdKMcnO0IIopooK4OMCXab0CSAIFeUCvdc6bg0-BD8NBlsfjjjqbLDuwpRyGHchmuw6PO50MjiZUc9xiNjOCs7j4wxHbIbJJxf2OI3e5ez22yt0brVP5vrkS_T2-PC6fi7ql6fN-r4uOloRVkgpBLc9tGBVVVZSqFL2nbSGm4q0nAjVS2gp9MBKUJIDpVZWJRdcaeCtZkt0-9ubOpd1njc0Y3SDjl8NgebnhoY0pxv-gw8h_oHN2Fv2Dcc6YKo</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Dionne, Jason</creator><creator>McCarthy, Brian</creator><creator>Ross-Johnsrud, Ben</creator><creator>Masi, Louis</creator><creator>Lipkens, Bart</creator><scope/></search><sort><creationdate>2013</creationdate><title>Large volume flow rate acoustophoretic phase separator for oil water emulsion splitting</title><author>Dionne, Jason ; McCarthy, Brian ; Ross-Johnsrud, Ben ; Masi, Louis ; Lipkens, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2813-77664fd0b0f985876957dc7fe4e81b4169d70b20d0350974022f7854649a04ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dionne, Jason</creatorcontrib><creatorcontrib>McCarthy, Brian</creatorcontrib><creatorcontrib>Ross-Johnsrud, Ben</creatorcontrib><creatorcontrib>Masi, Louis</creatorcontrib><creatorcontrib>Lipkens, Bart</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dionne, Jason</au><au>McCarthy, Brian</au><au>Ross-Johnsrud, Ben</au><au>Masi, Louis</au><au>Lipkens, Bart</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Large volume flow rate acoustophoretic phase separator for oil water emulsion splitting</atitle><btitle>Proceedings of Meetings on Acoustics</btitle><date>2013</date><risdate>2013</risdate><volume>19</volume><issue>1</issue><eissn>1939-800X</eissn><coden>PMARCW</coden><abstract>Efficient separation technologies for multi-component liquid streams that eliminate waste and reduce energy consumption are needed. Current technologies suffer from high cost of energy, use of consumables, fouling, and limited separation efficiency of micron-sized particles. We propose a novel platform technology consisting of a large volume flow rate acoustophoretic phase separator based on ultrasonic standing waves. The acoustic resonator is designed to create a high intensity three dimensional ultrasonic standing wave resulting in an acoustic radiation force that is larger than the combined effects of fluid drag and buoyancy, and is therefore able to trap, i.e., hold stationary, the suspended phase. The action of the acoustic forces on the trapped particles results in concentration, agglomeration and/or coalescence of particles and droplets. Heavier than water particles are separated through enhanced gravitational settling, and lighter particles through enhanced buoyancy. A first prototype consists of a 2" by 1" flow chamber driven by a single 1" by 1" transducer at 2 MHz, with flow rates of 30 L/hr, and measured oil separation efficiencies in excess of 95%. A second prototype is designed to further scale the system to flow rates of 150 L/hr. [Supported by NSF SBIR 1215021 and NSF PFI:BIC 1237723]</abstract><doi>10.1121/1.4799373</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1939-800X
ispartof Proceedings of Meetings on Acoustics, 2013, Vol.19 (1)
issn 1939-800X
language eng
recordid cdi_scitation_primary_10_1121_1_4799373
source AIP Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Large volume flow rate acoustophoretic phase separator for oil water emulsion splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Large%20volume%20flow%20rate%20acoustophoretic%20phase%20separator%20for%20oil%20water%20emulsion%20splitting&rft.btitle=Proceedings%20of%20Meetings%20on%20Acoustics&rft.au=Dionne,%20Jason&rft.date=2013&rft.volume=19&rft.issue=1&rft.eissn=1939-800X&rft.coden=PMARCW&rft_id=info:doi/10.1121/1.4799373&rft_dat=%3Cscitation%3Epoma%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true