Multiple source direction-of-arrival estimation applicable under near-, far-, and mixed-field scenarios
Traditionally, direction-of-arrival (DOA) estimations under near- and far-field scenarios are treated as independent tasks based on the corresponding acoustic model, hence necessitating a proper soundfield detector as an upstream processing tool, whereas there may not be a distinct boundary between...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2024-05, Vol.155 (5), p.2919-2933 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditionally, direction-of-arrival (DOA) estimations under near- and far-field scenarios are treated as independent tasks based on the corresponding acoustic model, hence necessitating a proper soundfield detector as an upstream processing tool, whereas there may not be a distinct boundary between different soundfield types, especially the mixed-field scenarios where both near- and far-field sources coexist simultaneously. To handle this issue, this article investigates a multisource DOA estimator that equally localizes multiple near-, far-, and mixed-field sources, not requiring any specialized adjustments. We (i) define a signal-invariant multichannel feature denoted generalized relative harmonic coefficients in the spherical harmonics domain; (ii) derive the analytical expression of this feature and summarize its unique properties, exhibiting consistence for both near- and far-field sources; (iii) estimate source elevation and azimuth using the magnitude and phase parts of this feature, respectively; (iv) detect single-source dominated periods from the mixed measurements based on an investigated distance measure; and (v) count the number of sources and localize their DOAs by clustering the single-source dominated estimates. Extensive experimental results, in both simulated and real-life environments, finally confirm the effectiveness of the proposed algorithm under diverse acoustic scenarios, and a superiority over baseline approaches in localizing mixed-field sources. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/10.0025856 |