An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries

As ultrasonic testing (UT) becomes increasingly widespread, accurate numerical simulations of the complex wave propagation behavior in solids become increasingly useful. This is especially true for complex geometries and material properties created by new manufacturing processes such as those use to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2022-10, Vol.152 (4), p.A119-A119
Hauptverfasser: Golembeski, Seth, Dieckman, Eric A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A119
container_issue 4
container_start_page A119
container_title The Journal of the Acoustical Society of America
container_volume 152
creator Golembeski, Seth
Dieckman, Eric A.
description As ultrasonic testing (UT) becomes increasingly widespread, accurate numerical simulations of the complex wave propagation behavior in solids become increasingly useful. This is especially true for complex geometries and material properties created by new manufacturing processes such as those use to create Additively Manufactured Metals (AMMs). Here, we present an open-source fully-anisotropic Elastodynamic Finite Integration (EFIT) implementation written in the Julia language which can be deployed to high-performance computers for large-scale parallel simulations. Results of benchmarks against existing isotropic implementations, published data, and collected measurements will be presented.
doi_str_mv 10.1121/10.0015740
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1121_10_0015740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c710-328774e01d328090da32ca205f09b319fad74243f8698bc8ea759774a4693bea3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EEqWw4Qu85KGAnXeWVdWWSpVgUdbVxJmkRokdbBfUT-SvcEjXrK59fe7MWEPILWdPnIf82StjPMlidkYmPAlZkCdhfE4mzNtBXKTpJbmy9sNfkzwqJuRnpqjuUQVWH4xAunp7D0AIbNGAw4pC37dSgJPaczV1e6TYgnW6OiropKC1VNIhlcphY0bOodgr-XlAerdYrrf31GkfNIhBJTtU1jPQ0m_4Qtob3UMzxkBV1PpWDo1Uja_oHWm184jv08HgQ2uHMcCU0hkwR9qg7tAZifaaXNT-GW9OOiXb5WI7fwk2r6v1fLYJRMZZEIV5lsXIeOVPrGAVRKGAkCU1K8qIFzVUWRzGUZ2nRV6KHCFLCp-AOC2iEiGakoexrDDaWoP1rjey86PsONsNOxj0tAMPP46wFdL9_fI_-hf_kYuB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Golembeski, Seth ; Dieckman, Eric A.</creator><creatorcontrib>Golembeski, Seth ; Dieckman, Eric A.</creatorcontrib><description>As ultrasonic testing (UT) becomes increasingly widespread, accurate numerical simulations of the complex wave propagation behavior in solids become increasingly useful. This is especially true for complex geometries and material properties created by new manufacturing processes such as those use to create Additively Manufactured Metals (AMMs). Here, we present an open-source fully-anisotropic Elastodynamic Finite Integration (EFIT) implementation written in the Julia language which can be deployed to high-performance computers for large-scale parallel simulations. Results of benchmarks against existing isotropic implementations, published data, and collected measurements will be presented.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0015740</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2022-10, Vol.152 (4), p.A119-A119</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0015740$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Golembeski, Seth</creatorcontrib><creatorcontrib>Dieckman, Eric A.</creatorcontrib><title>An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries</title><title>The Journal of the Acoustical Society of America</title><description>As ultrasonic testing (UT) becomes increasingly widespread, accurate numerical simulations of the complex wave propagation behavior in solids become increasingly useful. This is especially true for complex geometries and material properties created by new manufacturing processes such as those use to create Additively Manufactured Metals (AMMs). Here, we present an open-source fully-anisotropic Elastodynamic Finite Integration (EFIT) implementation written in the Julia language which can be deployed to high-performance computers for large-scale parallel simulations. Results of benchmarks against existing isotropic implementations, published data, and collected measurements will be presented.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAQRS0EEqWw4Qu85KGAnXeWVdWWSpVgUdbVxJmkRokdbBfUT-SvcEjXrK59fe7MWEPILWdPnIf82StjPMlidkYmPAlZkCdhfE4mzNtBXKTpJbmy9sNfkzwqJuRnpqjuUQVWH4xAunp7D0AIbNGAw4pC37dSgJPaczV1e6TYgnW6OiropKC1VNIhlcphY0bOodgr-XlAerdYrrf31GkfNIhBJTtU1jPQ0m_4Qtob3UMzxkBV1PpWDo1Uja_oHWm184jv08HgQ2uHMcCU0hkwR9qg7tAZifaaXNT-GW9OOiXb5WI7fwk2r6v1fLYJRMZZEIV5lsXIeOVPrGAVRKGAkCU1K8qIFzVUWRzGUZ2nRV6KHCFLCp-AOC2iEiGakoexrDDaWoP1rjey86PsONsNOxj0tAMPP46wFdL9_fI_-hf_kYuB</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Golembeski, Seth</creator><creator>Dieckman, Eric A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202210</creationdate><title>An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries</title><author>Golembeski, Seth ; Dieckman, Eric A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c710-328774e01d328090da32ca205f09b319fad74243f8698bc8ea759774a4693bea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golembeski, Seth</creatorcontrib><creatorcontrib>Dieckman, Eric A.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golembeski, Seth</au><au>Dieckman, Eric A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2022-10</date><risdate>2022</risdate><volume>152</volume><issue>4</issue><spage>A119</spage><epage>A119</epage><pages>A119-A119</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>As ultrasonic testing (UT) becomes increasingly widespread, accurate numerical simulations of the complex wave propagation behavior in solids become increasingly useful. This is especially true for complex geometries and material properties created by new manufacturing processes such as those use to create Additively Manufactured Metals (AMMs). Here, we present an open-source fully-anisotropic Elastodynamic Finite Integration (EFIT) implementation written in the Julia language which can be deployed to high-performance computers for large-scale parallel simulations. Results of benchmarks against existing isotropic implementations, published data, and collected measurements will be presented.</abstract><doi>10.1121/10.0015740</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2022-10, Vol.152 (4), p.A119-A119
issn 0001-4966
1520-8524
language eng
recordid cdi_scitation_primary_10_1121_10_0015740
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20open-source%20GPU-accelerated%20application%20of%20the%20elastodynamic%20finite%20integration%20technique%20(EFIT)%20to%20three-dimensional%20wave%20propagation%20and%20scattering%20in%20anisotropic%20materials%20of%20arbitrary%20geometries&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Golembeski,%20Seth&rft.date=2022-10&rft.volume=152&rft.issue=4&rft.spage=A119&rft.epage=A119&rft.pages=A119-A119&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0015740&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true