An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries
As ultrasonic testing (UT) becomes increasingly widespread, accurate numerical simulations of the complex wave propagation behavior in solids become increasingly useful. This is especially true for complex geometries and material properties created by new manufacturing processes such as those use to...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2022-10, Vol.152 (4), p.A119-A119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A119 |
---|---|
container_issue | 4 |
container_start_page | A119 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 152 |
creator | Golembeski, Seth Dieckman, Eric A. |
description | As ultrasonic testing (UT) becomes increasingly widespread, accurate numerical simulations of the complex wave propagation behavior in solids become increasingly useful. This is especially true for complex geometries and material properties created by new manufacturing processes such as those use to create Additively Manufactured Metals (AMMs). Here, we present an open-source fully-anisotropic Elastodynamic Finite Integration (EFIT) implementation written in the Julia language which can be deployed to high-performance computers for large-scale parallel simulations. Results of benchmarks against existing isotropic implementations, published data, and collected measurements will be presented. |
doi_str_mv | 10.1121/10.0015740 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1121_10_0015740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c710-328774e01d328090da32ca205f09b319fad74243f8698bc8ea759774a4693bea3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EEqWw4Qu85KGAnXeWVdWWSpVgUdbVxJmkRokdbBfUT-SvcEjXrK59fe7MWEPILWdPnIf82StjPMlidkYmPAlZkCdhfE4mzNtBXKTpJbmy9sNfkzwqJuRnpqjuUQVWH4xAunp7D0AIbNGAw4pC37dSgJPaczV1e6TYgnW6OiropKC1VNIhlcphY0bOodgr-XlAerdYrrf31GkfNIhBJTtU1jPQ0m_4Qtob3UMzxkBV1PpWDo1Uja_oHWm184jv08HgQ2uHMcCU0hkwR9qg7tAZifaaXNT-GW9OOiXb5WI7fwk2r6v1fLYJRMZZEIV5lsXIeOVPrGAVRKGAkCU1K8qIFzVUWRzGUZ2nRV6KHCFLCp-AOC2iEiGakoexrDDaWoP1rjey86PsONsNOxj0tAMPP46wFdL9_fI_-hf_kYuB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Golembeski, Seth ; Dieckman, Eric A.</creator><creatorcontrib>Golembeski, Seth ; Dieckman, Eric A.</creatorcontrib><description>As ultrasonic testing (UT) becomes increasingly widespread, accurate numerical simulations of the complex wave propagation behavior in solids become increasingly useful. This is especially true for complex geometries and material properties created by new manufacturing processes such as those use to create Additively Manufactured Metals (AMMs). Here, we present an open-source fully-anisotropic Elastodynamic Finite Integration (EFIT) implementation written in the Julia language which can be deployed to high-performance computers for large-scale parallel simulations. Results of benchmarks against existing isotropic implementations, published data, and collected measurements will be presented.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0015740</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2022-10, Vol.152 (4), p.A119-A119</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0015740$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Golembeski, Seth</creatorcontrib><creatorcontrib>Dieckman, Eric A.</creatorcontrib><title>An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries</title><title>The Journal of the Acoustical Society of America</title><description>As ultrasonic testing (UT) becomes increasingly widespread, accurate numerical simulations of the complex wave propagation behavior in solids become increasingly useful. This is especially true for complex geometries and material properties created by new manufacturing processes such as those use to create Additively Manufactured Metals (AMMs). Here, we present an open-source fully-anisotropic Elastodynamic Finite Integration (EFIT) implementation written in the Julia language which can be deployed to high-performance computers for large-scale parallel simulations. Results of benchmarks against existing isotropic implementations, published data, and collected measurements will be presented.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAQRS0EEqWw4Qu85KGAnXeWVdWWSpVgUdbVxJmkRokdbBfUT-SvcEjXrK59fe7MWEPILWdPnIf82StjPMlidkYmPAlZkCdhfE4mzNtBXKTpJbmy9sNfkzwqJuRnpqjuUQVWH4xAunp7D0AIbNGAw4pC37dSgJPaczV1e6TYgnW6OiropKC1VNIhlcphY0bOodgr-XlAerdYrrf31GkfNIhBJTtU1jPQ0m_4Qtob3UMzxkBV1PpWDo1Uja_oHWm184jv08HgQ2uHMcCU0hkwR9qg7tAZifaaXNT-GW9OOiXb5WI7fwk2r6v1fLYJRMZZEIV5lsXIeOVPrGAVRKGAkCU1K8qIFzVUWRzGUZ2nRV6KHCFLCp-AOC2iEiGakoexrDDaWoP1rjey86PsONsNOxj0tAMPP46wFdL9_fI_-hf_kYuB</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Golembeski, Seth</creator><creator>Dieckman, Eric A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202210</creationdate><title>An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries</title><author>Golembeski, Seth ; Dieckman, Eric A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c710-328774e01d328090da32ca205f09b319fad74243f8698bc8ea759774a4693bea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golembeski, Seth</creatorcontrib><creatorcontrib>Dieckman, Eric A.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golembeski, Seth</au><au>Dieckman, Eric A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2022-10</date><risdate>2022</risdate><volume>152</volume><issue>4</issue><spage>A119</spage><epage>A119</epage><pages>A119-A119</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>As ultrasonic testing (UT) becomes increasingly widespread, accurate numerical simulations of the complex wave propagation behavior in solids become increasingly useful. This is especially true for complex geometries and material properties created by new manufacturing processes such as those use to create Additively Manufactured Metals (AMMs). Here, we present an open-source fully-anisotropic Elastodynamic Finite Integration (EFIT) implementation written in the Julia language which can be deployed to high-performance computers for large-scale parallel simulations. Results of benchmarks against existing isotropic implementations, published data, and collected measurements will be presented.</abstract><doi>10.1121/10.0015740</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2022-10, Vol.152 (4), p.A119-A119 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_scitation_primary_10_1121_10_0015740 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
title | An open-source GPU-accelerated application of the elastodynamic finite integration technique (EFIT) to three-dimensional wave propagation and scattering in anisotropic materials of arbitrary geometries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20open-source%20GPU-accelerated%20application%20of%20the%20elastodynamic%20finite%20integration%20technique%20(EFIT)%20to%20three-dimensional%20wave%20propagation%20and%20scattering%20in%20anisotropic%20materials%20of%20arbitrary%20geometries&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Golembeski,%20Seth&rft.date=2022-10&rft.volume=152&rft.issue=4&rft.spage=A119&rft.epage=A119&rft.pages=A119-A119&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0015740&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |