A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction
We developed a piezoelectric micromachined cantilever acoustic vector (PEMCAV) sensor. We modeled the device using a “lumped” approach that considers fluid–structure interaction, the piezoelectric effect, and the mechanical impedance of the cantilever. Due to the high flexibility, the influence of t...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2021-07, Vol.150 (1), p.257-269 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | 1 |
container_start_page | 257 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 150 |
creator | Kim, Junsoo Yang, Seongkwan Oh, Keunha Moon, Wonkyu |
description | We developed a piezoelectric micromachined cantilever acoustic vector (PEMCAV) sensor. We modeled the device using a “lumped” approach that considers fluid–structure interaction, the piezoelectric effect, and the mechanical impedance of the cantilever. Due to the high flexibility, the influence of the medium is significant, so fluid–structure interaction must be considered in theoretical modeling. We compared the model data to experimental results. The design parameters optimized using the derived analytical open-circuit sensitivity equation are presented, and the physical characteristics of the sensor are discussed. We used a micromachining technique to fabricate the sensor, added a preamplifier, and tested it using a reference hydrophone under a frequency range of 100 Hz–1 kHz. The analytical predictions and experimental results were in good agreement with respect to frequency response and the directivity of the sensor. Even when the sensor was much smaller than the wavelength (
k
a
≪
1), the proposed sensor exhibited a typical cosine directivity pattern, and the measured sensitivity at 100 Hz was −194 dBV/μPa. |
doi_str_mv | 10.1121/10.0005538 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1121_10_0005538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557544120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b04f52479f95ea6346b33ad3dd0b2304be6f5aab08c2bc1eb0dda1523c19e7863</originalsourceid><addsrcrecordid>eNp90M1KxDAUBeAgCo6jG58gS1GqSZN02uUw-AcDbnRd0uR2yNBJapIO6Mp38A19ElNmEBfi6sDNxyXnInROyTWlOb1JSQgRgpUHaEJFTrJS5PwQTdKUZrwqimN0EsJ6RCWrJmg9x72BdwcdqOiNwhujvMuUtNF0sAWPpXJDiOllm4TzOIANKTQEs7KgsXI2GA3e2BVuu8Hor4_PEP2g4uABGxvBSxWNs6foqJVdgLN9TtHL3e3z4iFbPt0_LubLTDFWxKwhvE1_nlVtJUAWjBcNY1IzrUmTM8IbKFohZUNKlTeKQkO0lqkqU7SCWVmwKbrY7e29ex0gxHpjgoKukxZSlToXYiY4pzlJ9HJHU-cQPLR1781G-reakno86Jj7gyZ8tcNBmSjHRj966_wvWfe6_U__sfsb2FmIVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557544120</pqid></control><display><type>article</type><title>A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Kim, Junsoo ; Yang, Seongkwan ; Oh, Keunha ; Moon, Wonkyu</creator><creatorcontrib>Kim, Junsoo ; Yang, Seongkwan ; Oh, Keunha ; Moon, Wonkyu</creatorcontrib><description>We developed a piezoelectric micromachined cantilever acoustic vector (PEMCAV) sensor. We modeled the device using a “lumped” approach that considers fluid–structure interaction, the piezoelectric effect, and the mechanical impedance of the cantilever. Due to the high flexibility, the influence of the medium is significant, so fluid–structure interaction must be considered in theoretical modeling. We compared the model data to experimental results. The design parameters optimized using the derived analytical open-circuit sensitivity equation are presented, and the physical characteristics of the sensor are discussed. We used a micromachining technique to fabricate the sensor, added a preamplifier, and tested it using a reference hydrophone under a frequency range of 100 Hz–1 kHz. The analytical predictions and experimental results were in good agreement with respect to frequency response and the directivity of the sensor. Even when the sensor was much smaller than the wavelength (
k
a
≪
1), the proposed sensor exhibited a typical cosine directivity pattern, and the measured sensitivity at 100 Hz was −194 dBV/μPa.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0005538</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-07, Vol.150 (1), p.257-269</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b04f52479f95ea6346b33ad3dd0b2304be6f5aab08c2bc1eb0dda1523c19e7863</citedby><cites>FETCH-LOGICAL-c336t-b04f52479f95ea6346b33ad3dd0b2304be6f5aab08c2bc1eb0dda1523c19e7863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0005538$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Kim, Junsoo</creatorcontrib><creatorcontrib>Yang, Seongkwan</creatorcontrib><creatorcontrib>Oh, Keunha</creatorcontrib><creatorcontrib>Moon, Wonkyu</creatorcontrib><title>A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction</title><title>The Journal of the Acoustical Society of America</title><description>We developed a piezoelectric micromachined cantilever acoustic vector (PEMCAV) sensor. We modeled the device using a “lumped” approach that considers fluid–structure interaction, the piezoelectric effect, and the mechanical impedance of the cantilever. Due to the high flexibility, the influence of the medium is significant, so fluid–structure interaction must be considered in theoretical modeling. We compared the model data to experimental results. The design parameters optimized using the derived analytical open-circuit sensitivity equation are presented, and the physical characteristics of the sensor are discussed. We used a micromachining technique to fabricate the sensor, added a preamplifier, and tested it using a reference hydrophone under a frequency range of 100 Hz–1 kHz. The analytical predictions and experimental results were in good agreement with respect to frequency response and the directivity of the sensor. Even when the sensor was much smaller than the wavelength (
k
a
≪
1), the proposed sensor exhibited a typical cosine directivity pattern, and the measured sensitivity at 100 Hz was −194 dBV/μPa.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90M1KxDAUBeAgCo6jG58gS1GqSZN02uUw-AcDbnRd0uR2yNBJapIO6Mp38A19ElNmEBfi6sDNxyXnInROyTWlOb1JSQgRgpUHaEJFTrJS5PwQTdKUZrwqimN0EsJ6RCWrJmg9x72BdwcdqOiNwhujvMuUtNF0sAWPpXJDiOllm4TzOIANKTQEs7KgsXI2GA3e2BVuu8Hor4_PEP2g4uABGxvBSxWNs6foqJVdgLN9TtHL3e3z4iFbPt0_LubLTDFWxKwhvE1_nlVtJUAWjBcNY1IzrUmTM8IbKFohZUNKlTeKQkO0lqkqU7SCWVmwKbrY7e29ex0gxHpjgoKukxZSlToXYiY4pzlJ9HJHU-cQPLR1781G-reakno86Jj7gyZ8tcNBmSjHRj966_wvWfe6_U__sfsb2FmIVg</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Kim, Junsoo</creator><creator>Yang, Seongkwan</creator><creator>Oh, Keunha</creator><creator>Moon, Wonkyu</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202107</creationdate><title>A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction</title><author>Kim, Junsoo ; Yang, Seongkwan ; Oh, Keunha ; Moon, Wonkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b04f52479f95ea6346b33ad3dd0b2304be6f5aab08c2bc1eb0dda1523c19e7863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Junsoo</creatorcontrib><creatorcontrib>Yang, Seongkwan</creatorcontrib><creatorcontrib>Oh, Keunha</creatorcontrib><creatorcontrib>Moon, Wonkyu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Junsoo</au><au>Yang, Seongkwan</au><au>Oh, Keunha</au><au>Moon, Wonkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-07</date><risdate>2021</risdate><volume>150</volume><issue>1</issue><spage>257</spage><epage>269</epage><pages>257-269</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>We developed a piezoelectric micromachined cantilever acoustic vector (PEMCAV) sensor. We modeled the device using a “lumped” approach that considers fluid–structure interaction, the piezoelectric effect, and the mechanical impedance of the cantilever. Due to the high flexibility, the influence of the medium is significant, so fluid–structure interaction must be considered in theoretical modeling. We compared the model data to experimental results. The design parameters optimized using the derived analytical open-circuit sensitivity equation are presented, and the physical characteristics of the sensor are discussed. We used a micromachining technique to fabricate the sensor, added a preamplifier, and tested it using a reference hydrophone under a frequency range of 100 Hz–1 kHz. The analytical predictions and experimental results were in good agreement with respect to frequency response and the directivity of the sensor. Even when the sensor was much smaller than the wavelength (
k
a
≪
1), the proposed sensor exhibited a typical cosine directivity pattern, and the measured sensitivity at 100 Hz was −194 dBV/μPa.</abstract><doi>10.1121/10.0005538</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2021-07, Vol.150 (1), p.257-269 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_scitation_primary_10_1121_10_0005538 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
title | A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20piezoelectric%20micro-cantilever%20acoustic%20vector%20sensor%20designed%20considering%20fluid%E2%80%93structure%20interaction&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Kim,%20Junsoo&rft.date=2021-07&rft.volume=150&rft.issue=1&rft.spage=257&rft.epage=269&rft.pages=257-269&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0005538&rft_dat=%3Cproquest_scita%3E2557544120%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557544120&rft_id=info:pmid/&rfr_iscdi=true |