A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction

We developed a piezoelectric micromachined cantilever acoustic vector (PEMCAV) sensor. We modeled the device using a “lumped” approach that considers fluid–structure interaction, the piezoelectric effect, and the mechanical impedance of the cantilever. Due to the high flexibility, the influence of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2021-07, Vol.150 (1), p.257-269
Hauptverfasser: Kim, Junsoo, Yang, Seongkwan, Oh, Keunha, Moon, Wonkyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue 1
container_start_page 257
container_title The Journal of the Acoustical Society of America
container_volume 150
creator Kim, Junsoo
Yang, Seongkwan
Oh, Keunha
Moon, Wonkyu
description We developed a piezoelectric micromachined cantilever acoustic vector (PEMCAV) sensor. We modeled the device using a “lumped” approach that considers fluid–structure interaction, the piezoelectric effect, and the mechanical impedance of the cantilever. Due to the high flexibility, the influence of the medium is significant, so fluid–structure interaction must be considered in theoretical modeling. We compared the model data to experimental results. The design parameters optimized using the derived analytical open-circuit sensitivity equation are presented, and the physical characteristics of the sensor are discussed. We used a micromachining technique to fabricate the sensor, added a preamplifier, and tested it using a reference hydrophone under a frequency range of 100 Hz–1 kHz. The analytical predictions and experimental results were in good agreement with respect to frequency response and the directivity of the sensor. Even when the sensor was much smaller than the wavelength ( k a ≪ 1), the proposed sensor exhibited a typical cosine directivity pattern, and the measured sensitivity at 100 Hz was −194 dBV/μPa.
doi_str_mv 10.1121/10.0005538
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1121_10_0005538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557544120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b04f52479f95ea6346b33ad3dd0b2304be6f5aab08c2bc1eb0dda1523c19e7863</originalsourceid><addsrcrecordid>eNp90M1KxDAUBeAgCo6jG58gS1GqSZN02uUw-AcDbnRd0uR2yNBJapIO6Mp38A19ElNmEBfi6sDNxyXnInROyTWlOb1JSQgRgpUHaEJFTrJS5PwQTdKUZrwqimN0EsJ6RCWrJmg9x72BdwcdqOiNwhujvMuUtNF0sAWPpXJDiOllm4TzOIANKTQEs7KgsXI2GA3e2BVuu8Hor4_PEP2g4uABGxvBSxWNs6foqJVdgLN9TtHL3e3z4iFbPt0_LubLTDFWxKwhvE1_nlVtJUAWjBcNY1IzrUmTM8IbKFohZUNKlTeKQkO0lqkqU7SCWVmwKbrY7e29ex0gxHpjgoKukxZSlToXYiY4pzlJ9HJHU-cQPLR1781G-reakno86Jj7gyZ8tcNBmSjHRj966_wvWfe6_U__sfsb2FmIVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557544120</pqid></control><display><type>article</type><title>A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Kim, Junsoo ; Yang, Seongkwan ; Oh, Keunha ; Moon, Wonkyu</creator><creatorcontrib>Kim, Junsoo ; Yang, Seongkwan ; Oh, Keunha ; Moon, Wonkyu</creatorcontrib><description>We developed a piezoelectric micromachined cantilever acoustic vector (PEMCAV) sensor. We modeled the device using a “lumped” approach that considers fluid–structure interaction, the piezoelectric effect, and the mechanical impedance of the cantilever. Due to the high flexibility, the influence of the medium is significant, so fluid–structure interaction must be considered in theoretical modeling. We compared the model data to experimental results. The design parameters optimized using the derived analytical open-circuit sensitivity equation are presented, and the physical characteristics of the sensor are discussed. We used a micromachining technique to fabricate the sensor, added a preamplifier, and tested it using a reference hydrophone under a frequency range of 100 Hz–1 kHz. The analytical predictions and experimental results were in good agreement with respect to frequency response and the directivity of the sensor. Even when the sensor was much smaller than the wavelength ( k a ≪ 1), the proposed sensor exhibited a typical cosine directivity pattern, and the measured sensitivity at 100 Hz was −194 dBV/μPa.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0005538</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-07, Vol.150 (1), p.257-269</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b04f52479f95ea6346b33ad3dd0b2304be6f5aab08c2bc1eb0dda1523c19e7863</citedby><cites>FETCH-LOGICAL-c336t-b04f52479f95ea6346b33ad3dd0b2304be6f5aab08c2bc1eb0dda1523c19e7863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0005538$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Kim, Junsoo</creatorcontrib><creatorcontrib>Yang, Seongkwan</creatorcontrib><creatorcontrib>Oh, Keunha</creatorcontrib><creatorcontrib>Moon, Wonkyu</creatorcontrib><title>A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction</title><title>The Journal of the Acoustical Society of America</title><description>We developed a piezoelectric micromachined cantilever acoustic vector (PEMCAV) sensor. We modeled the device using a “lumped” approach that considers fluid–structure interaction, the piezoelectric effect, and the mechanical impedance of the cantilever. Due to the high flexibility, the influence of the medium is significant, so fluid–structure interaction must be considered in theoretical modeling. We compared the model data to experimental results. The design parameters optimized using the derived analytical open-circuit sensitivity equation are presented, and the physical characteristics of the sensor are discussed. We used a micromachining technique to fabricate the sensor, added a preamplifier, and tested it using a reference hydrophone under a frequency range of 100 Hz–1 kHz. The analytical predictions and experimental results were in good agreement with respect to frequency response and the directivity of the sensor. Even when the sensor was much smaller than the wavelength ( k a ≪ 1), the proposed sensor exhibited a typical cosine directivity pattern, and the measured sensitivity at 100 Hz was −194 dBV/μPa.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90M1KxDAUBeAgCo6jG58gS1GqSZN02uUw-AcDbnRd0uR2yNBJapIO6Mp38A19ElNmEBfi6sDNxyXnInROyTWlOb1JSQgRgpUHaEJFTrJS5PwQTdKUZrwqimN0EsJ6RCWrJmg9x72BdwcdqOiNwhujvMuUtNF0sAWPpXJDiOllm4TzOIANKTQEs7KgsXI2GA3e2BVuu8Hor4_PEP2g4uABGxvBSxWNs6foqJVdgLN9TtHL3e3z4iFbPt0_LubLTDFWxKwhvE1_nlVtJUAWjBcNY1IzrUmTM8IbKFohZUNKlTeKQkO0lqkqU7SCWVmwKbrY7e29ex0gxHpjgoKukxZSlToXYiY4pzlJ9HJHU-cQPLR1781G-reakno86Jj7gyZ8tcNBmSjHRj966_wvWfe6_U__sfsb2FmIVg</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Kim, Junsoo</creator><creator>Yang, Seongkwan</creator><creator>Oh, Keunha</creator><creator>Moon, Wonkyu</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202107</creationdate><title>A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction</title><author>Kim, Junsoo ; Yang, Seongkwan ; Oh, Keunha ; Moon, Wonkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b04f52479f95ea6346b33ad3dd0b2304be6f5aab08c2bc1eb0dda1523c19e7863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Junsoo</creatorcontrib><creatorcontrib>Yang, Seongkwan</creatorcontrib><creatorcontrib>Oh, Keunha</creatorcontrib><creatorcontrib>Moon, Wonkyu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Junsoo</au><au>Yang, Seongkwan</au><au>Oh, Keunha</au><au>Moon, Wonkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-07</date><risdate>2021</risdate><volume>150</volume><issue>1</issue><spage>257</spage><epage>269</epage><pages>257-269</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>We developed a piezoelectric micromachined cantilever acoustic vector (PEMCAV) sensor. We modeled the device using a “lumped” approach that considers fluid–structure interaction, the piezoelectric effect, and the mechanical impedance of the cantilever. Due to the high flexibility, the influence of the medium is significant, so fluid–structure interaction must be considered in theoretical modeling. We compared the model data to experimental results. The design parameters optimized using the derived analytical open-circuit sensitivity equation are presented, and the physical characteristics of the sensor are discussed. We used a micromachining technique to fabricate the sensor, added a preamplifier, and tested it using a reference hydrophone under a frequency range of 100 Hz–1 kHz. The analytical predictions and experimental results were in good agreement with respect to frequency response and the directivity of the sensor. Even when the sensor was much smaller than the wavelength ( k a ≪ 1), the proposed sensor exhibited a typical cosine directivity pattern, and the measured sensitivity at 100 Hz was −194 dBV/μPa.</abstract><doi>10.1121/10.0005538</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2021-07, Vol.150 (1), p.257-269
issn 0001-4966
1520-8524
language eng
recordid cdi_scitation_primary_10_1121_10_0005538
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title A piezoelectric micro-cantilever acoustic vector sensor designed considering fluid–structure interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20piezoelectric%20micro-cantilever%20acoustic%20vector%20sensor%20designed%20considering%20fluid%E2%80%93structure%20interaction&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Kim,%20Junsoo&rft.date=2021-07&rft.volume=150&rft.issue=1&rft.spage=257&rft.epage=269&rft.pages=257-269&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0005538&rft_dat=%3Cproquest_scita%3E2557544120%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557544120&rft_id=info:pmid/&rfr_iscdi=true