Seabed type and source parameters predictions using ship spectrograms in convolutional neural networksa
Broadband spectrograms from surface ships are employed in convolutional neural networks (CNNs) to predict the seabed type, ship speed, and closest point of approach (CPA) range. Three CNN architectures of differing size and depth are trained on different representations of the spectrograms. Multitas...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2021-02, Vol.149 (2), p.1198-1210 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1210 |
---|---|
container_issue | 2 |
container_start_page | 1198 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 149 |
creator | Van Komen, David F. Neilsen, Tracianne B. Mortenson, Daniel B. Acree, Mason C. Knobles, David P. Badiey, Mohsen Hodgkiss, William S. |
description | Broadband spectrograms from surface ships are employed in convolutional neural networks (CNNs) to predict the seabed type, ship speed, and closest point of approach (CPA) range. Three CNN architectures of differing size and depth are trained on different representations of the spectrograms. Multitask learning is employed; the seabed type prediction comes from classification, and the ship speed and CPA range are estimated via regression. Due to the lack of labeled field data, the CNNs are trained on synthetic data generated using measured sound speed profiles, four seabed types, and a random distribution of source parameters. Additional synthetic datasets are used to evaluate the ability of the trained CNNs to interpolate and extrapolate source parameters. The trained models are then applied to a measured data sample from the 2017 Seabed Characterization Experiment (SBCEX 2017). While the largest network provides slightly more accurate predictions on tests with synthetic data, the smallest network generalized better to the measured data sample. With regard to the input data type, complex pressure spectral values gave the most accurate and consistent results for the ship speed and CPA predictions with the smallest network, whereas using absolute values of the pressure provided more accurate results compared to the expected seabed types. |
doi_str_mv | 10.1121/10.0003502 |
format | Article |
fullrecord | <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1121_10_0003502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-s157t-dab3bb809fa2eefa07954d5f353857ad1b919ee271c1af6f4b11654c27a485163</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI5u_AXZSzU3afpYyuALBlyo63KbR43OtCFJR-bf2-osXLn6uIePy-EQcgnsGoDDzUTGmJCMH5EFSM6ySvL8mCymFLK8LopTchbjx3TKStQL0r0YbI2mae8NxV7TOIxBGeox4NYkEyL1wWinkhv6SMfo-o7Gd-dp9EalMHSTF6nrqRr63bAZZw83tDdj-EH6GsJnxHNyYnETzcWBS_J2f_e6eszWzw9Pq9t1FkGWKdPYiratWG2RG2ORlbXMtbRCikqWqKGtoTaGl6AAbWHzFqCQueIl5pWEQizJ1e_fqFzCuUzjg9ti2DfAmnmjmYeN_rN3Q_hjNl5b8Q2pzWq1</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Seabed type and source parameters predictions using ship spectrograms in convolutional neural networksa</title><source>American Institute of Physics</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Van Komen, David F. ; Neilsen, Tracianne B. ; Mortenson, Daniel B. ; Acree, Mason C. ; Knobles, David P. ; Badiey, Mohsen ; Hodgkiss, William S.</creator><creatorcontrib>Van Komen, David F. ; Neilsen, Tracianne B. ; Mortenson, Daniel B. ; Acree, Mason C. ; Knobles, David P. ; Badiey, Mohsen ; Hodgkiss, William S.</creatorcontrib><description>Broadband spectrograms from surface ships are employed in convolutional neural networks (CNNs) to predict the seabed type, ship speed, and closest point of approach (CPA) range. Three CNN architectures of differing size and depth are trained on different representations of the spectrograms. Multitask learning is employed; the seabed type prediction comes from classification, and the ship speed and CPA range are estimated via regression. Due to the lack of labeled field data, the CNNs are trained on synthetic data generated using measured sound speed profiles, four seabed types, and a random distribution of source parameters. Additional synthetic datasets are used to evaluate the ability of the trained CNNs to interpolate and extrapolate source parameters. The trained models are then applied to a measured data sample from the 2017 Seabed Characterization Experiment (SBCEX 2017). While the largest network provides slightly more accurate predictions on tests with synthetic data, the smallest network generalized better to the measured data sample. With regard to the input data type, complex pressure spectral values gave the most accurate and consistent results for the ship speed and CPA predictions with the smallest network, whereas using absolute values of the pressure provided more accurate results compared to the expected seabed types.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0003502</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-02, Vol.149 (2), p.1198-1210</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9729-373X ; 0000-0003-0610-0806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0003502$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Van Komen, David F.</creatorcontrib><creatorcontrib>Neilsen, Tracianne B.</creatorcontrib><creatorcontrib>Mortenson, Daniel B.</creatorcontrib><creatorcontrib>Acree, Mason C.</creatorcontrib><creatorcontrib>Knobles, David P.</creatorcontrib><creatorcontrib>Badiey, Mohsen</creatorcontrib><creatorcontrib>Hodgkiss, William S.</creatorcontrib><title>Seabed type and source parameters predictions using ship spectrograms in convolutional neural networksa</title><title>The Journal of the Acoustical Society of America</title><description>Broadband spectrograms from surface ships are employed in convolutional neural networks (CNNs) to predict the seabed type, ship speed, and closest point of approach (CPA) range. Three CNN architectures of differing size and depth are trained on different representations of the spectrograms. Multitask learning is employed; the seabed type prediction comes from classification, and the ship speed and CPA range are estimated via regression. Due to the lack of labeled field data, the CNNs are trained on synthetic data generated using measured sound speed profiles, four seabed types, and a random distribution of source parameters. Additional synthetic datasets are used to evaluate the ability of the trained CNNs to interpolate and extrapolate source parameters. The trained models are then applied to a measured data sample from the 2017 Seabed Characterization Experiment (SBCEX 2017). While the largest network provides slightly more accurate predictions on tests with synthetic data, the smallest network generalized better to the measured data sample. With regard to the input data type, complex pressure spectral values gave the most accurate and consistent results for the ship speed and CPA predictions with the smallest network, whereas using absolute values of the pressure provided more accurate results compared to the expected seabed types.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNp9kEtLxDAUhYMoOI5u_AXZSzU3afpYyuALBlyo63KbR43OtCFJR-bf2-osXLn6uIePy-EQcgnsGoDDzUTGmJCMH5EFSM6ySvL8mCymFLK8LopTchbjx3TKStQL0r0YbI2mae8NxV7TOIxBGeox4NYkEyL1wWinkhv6SMfo-o7Gd-dp9EalMHSTF6nrqRr63bAZZw83tDdj-EH6GsJnxHNyYnETzcWBS_J2f_e6eszWzw9Pq9t1FkGWKdPYiratWG2RG2ORlbXMtbRCikqWqKGtoTaGl6AAbWHzFqCQueIl5pWEQizJ1e_fqFzCuUzjg9ti2DfAmnmjmYeN_rN3Q_hjNl5b8Q2pzWq1</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Van Komen, David F.</creator><creator>Neilsen, Tracianne B.</creator><creator>Mortenson, Daniel B.</creator><creator>Acree, Mason C.</creator><creator>Knobles, David P.</creator><creator>Badiey, Mohsen</creator><creator>Hodgkiss, William S.</creator><scope/><orcidid>https://orcid.org/0000-0002-9729-373X</orcidid><orcidid>https://orcid.org/0000-0003-0610-0806</orcidid></search><sort><creationdate>202102</creationdate><title>Seabed type and source parameters predictions using ship spectrograms in convolutional neural networksa</title><author>Van Komen, David F. ; Neilsen, Tracianne B. ; Mortenson, Daniel B. ; Acree, Mason C. ; Knobles, David P. ; Badiey, Mohsen ; Hodgkiss, William S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s157t-dab3bb809fa2eefa07954d5f353857ad1b919ee271c1af6f4b11654c27a485163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Komen, David F.</creatorcontrib><creatorcontrib>Neilsen, Tracianne B.</creatorcontrib><creatorcontrib>Mortenson, Daniel B.</creatorcontrib><creatorcontrib>Acree, Mason C.</creatorcontrib><creatorcontrib>Knobles, David P.</creatorcontrib><creatorcontrib>Badiey, Mohsen</creatorcontrib><creatorcontrib>Hodgkiss, William S.</creatorcontrib><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Komen, David F.</au><au>Neilsen, Tracianne B.</au><au>Mortenson, Daniel B.</au><au>Acree, Mason C.</au><au>Knobles, David P.</au><au>Badiey, Mohsen</au><au>Hodgkiss, William S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seabed type and source parameters predictions using ship spectrograms in convolutional neural networksa</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-02</date><risdate>2021</risdate><volume>149</volume><issue>2</issue><spage>1198</spage><epage>1210</epage><pages>1198-1210</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Broadband spectrograms from surface ships are employed in convolutional neural networks (CNNs) to predict the seabed type, ship speed, and closest point of approach (CPA) range. Three CNN architectures of differing size and depth are trained on different representations of the spectrograms. Multitask learning is employed; the seabed type prediction comes from classification, and the ship speed and CPA range are estimated via regression. Due to the lack of labeled field data, the CNNs are trained on synthetic data generated using measured sound speed profiles, four seabed types, and a random distribution of source parameters. Additional synthetic datasets are used to evaluate the ability of the trained CNNs to interpolate and extrapolate source parameters. The trained models are then applied to a measured data sample from the 2017 Seabed Characterization Experiment (SBCEX 2017). While the largest network provides slightly more accurate predictions on tests with synthetic data, the smallest network generalized better to the measured data sample. With regard to the input data type, complex pressure spectral values gave the most accurate and consistent results for the ship speed and CPA predictions with the smallest network, whereas using absolute values of the pressure provided more accurate results compared to the expected seabed types.</abstract><doi>10.1121/10.0003502</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9729-373X</orcidid><orcidid>https://orcid.org/0000-0003-0610-0806</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2021-02, Vol.149 (2), p.1198-1210 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_scitation_primary_10_1121_10_0003502 |
source | American Institute of Physics; Alma/SFX Local Collection; AIP Acoustical Society of America |
title | Seabed type and source parameters predictions using ship spectrograms in convolutional neural networksa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seabed%20type%20and%20source%20parameters%20predictions%20using%20ship%20spectrograms%20in%20convolutional%20neural%20networksa&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Van%20Komen,%20David%20F.&rft.date=2021-02&rft.volume=149&rft.issue=2&rft.spage=1198&rft.epage=1210&rft.pages=1198-1210&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0003502&rft_dat=%3Cscitation%3Ejasa%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |