Eigenfunction orthogonality for one-dimensional acoustic systems with interior or end point conditions

Some common exercises presented in introductory acoustics courses and texts illustrate solutions involving eigenvalues and eigenfunctions. Challenging extensions of these, even for one-dimensional (1D) systems, might involve a mass or spring loading the acoustic medium at an end point or at an inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2020-08, Vol.148 (2), p.627-648
1. Verfasser: Maynard, J. D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue 2
container_start_page 627
container_title The Journal of the Acoustical Society of America
container_volume 148
creator Maynard, J. D.
description Some common exercises presented in introductory acoustics courses and texts illustrate solutions involving eigenvalues and eigenfunctions. Challenging extensions of these, even for one-dimensional (1D) systems, might involve a mass or spring loading the acoustic medium at an end point or at an interior point. These problems might be extended further by requiring that some given function be expanded in a series of the eigenfunctions, but such extended problems may lead to unexpected complications in regard to eigenfunction orthogonality. In this paper, Sturm-Liouville theory is used to develop a systematic method for predetermining eigenfunction orthogonality for 1D systems loaded at end points or interior points or having properties that change with jump discontinuities.
doi_str_mv 10.1121/10.0001601
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1121_10_0001601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439635220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-d1a92b829dd2aa71ca388b6330ed21d0bb3bb6b899633cb5c6fe4c301554f95e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsbf0GWoozmMRknSymtCgU3uh7ybCMzSU1SpP_ehHbt6nAP3z3cewC4xegRY4KfiiKEcIfwGZhhRlDTM9Keg1l1m5Z33SW4Sum7jKynfAbs0m2Mt3uvsgsehpi3YRO8GF0-QBsiDN402k3GJ1dtKFTYp-wUTIeUzZTgr8tb6Hw20VU8QuM13IXiQBW8djU3XYMLK8Zkbk46B1-r5efirVl_vL4vXtaNIoznRmPBiewJ15oI8YyVoH0vO0qR0QRrJCWVspM958VTkqnOmlZRhBlrLWeGzsHdMXcXw8_epDxMLikzjsKbcvdAWlpWGSGooPdHVMWQUjR22EU3iXgYMBpqmVVPZRb44Qgn5bKoL_1H_wEW_nZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439635220</pqid></control><display><type>article</type><title>Eigenfunction orthogonality for one-dimensional acoustic systems with interior or end point conditions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Maynard, J. D.</creator><creatorcontrib>Maynard, J. D.</creatorcontrib><description>Some common exercises presented in introductory acoustics courses and texts illustrate solutions involving eigenvalues and eigenfunctions. Challenging extensions of these, even for one-dimensional (1D) systems, might involve a mass or spring loading the acoustic medium at an end point or at an interior point. These problems might be extended further by requiring that some given function be expanded in a series of the eigenfunctions, but such extended problems may lead to unexpected complications in regard to eigenfunction orthogonality. In this paper, Sturm-Liouville theory is used to develop a systematic method for predetermining eigenfunction orthogonality for 1D systems loaded at end points or interior points or having properties that change with jump discontinuities.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0001601</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2020-08, Vol.148 (2), p.627-648</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-d1a92b829dd2aa71ca388b6330ed21d0bb3bb6b899633cb5c6fe4c301554f95e3</cites><orcidid>0000-0002-9310-1307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0001601$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Maynard, J. D.</creatorcontrib><title>Eigenfunction orthogonality for one-dimensional acoustic systems with interior or end point conditions</title><title>The Journal of the Acoustical Society of America</title><description>Some common exercises presented in introductory acoustics courses and texts illustrate solutions involving eigenvalues and eigenfunctions. Challenging extensions of these, even for one-dimensional (1D) systems, might involve a mass or spring loading the acoustic medium at an end point or at an interior point. These problems might be extended further by requiring that some given function be expanded in a series of the eigenfunctions, but such extended problems may lead to unexpected complications in regard to eigenfunction orthogonality. In this paper, Sturm-Liouville theory is used to develop a systematic method for predetermining eigenfunction orthogonality for 1D systems loaded at end points or interior points or having properties that change with jump discontinuities.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsbf0GWoozmMRknSymtCgU3uh7ybCMzSU1SpP_ehHbt6nAP3z3cewC4xegRY4KfiiKEcIfwGZhhRlDTM9Keg1l1m5Z33SW4Sum7jKynfAbs0m2Mt3uvsgsehpi3YRO8GF0-QBsiDN402k3GJ1dtKFTYp-wUTIeUzZTgr8tb6Hw20VU8QuM13IXiQBW8djU3XYMLK8Zkbk46B1-r5efirVl_vL4vXtaNIoznRmPBiewJ15oI8YyVoH0vO0qR0QRrJCWVspM958VTkqnOmlZRhBlrLWeGzsHdMXcXw8_epDxMLikzjsKbcvdAWlpWGSGooPdHVMWQUjR22EU3iXgYMBpqmVVPZRb44Qgn5bKoL_1H_wEW_nZs</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Maynard, J. D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9310-1307</orcidid></search><sort><creationdate>202008</creationdate><title>Eigenfunction orthogonality for one-dimensional acoustic systems with interior or end point conditions</title><author>Maynard, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-d1a92b829dd2aa71ca388b6330ed21d0bb3bb6b899633cb5c6fe4c301554f95e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maynard, J. D.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maynard, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenfunction orthogonality for one-dimensional acoustic systems with interior or end point conditions</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2020-08</date><risdate>2020</risdate><volume>148</volume><issue>2</issue><spage>627</spage><epage>648</epage><pages>627-648</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Some common exercises presented in introductory acoustics courses and texts illustrate solutions involving eigenvalues and eigenfunctions. Challenging extensions of these, even for one-dimensional (1D) systems, might involve a mass or spring loading the acoustic medium at an end point or at an interior point. These problems might be extended further by requiring that some given function be expanded in a series of the eigenfunctions, but such extended problems may lead to unexpected complications in regard to eigenfunction orthogonality. In this paper, Sturm-Liouville theory is used to develop a systematic method for predetermining eigenfunction orthogonality for 1D systems loaded at end points or interior points or having properties that change with jump discontinuities.</abstract><doi>10.1121/10.0001601</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9310-1307</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2020-08, Vol.148 (2), p.627-648
issn 0001-4966
1520-8524
language eng
recordid cdi_scitation_primary_10_1121_10_0001601
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Eigenfunction orthogonality for one-dimensional acoustic systems with interior or end point conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenfunction%20orthogonality%20for%20one-dimensional%20acoustic%20systems%20with%20interior%20or%20end%20point%20conditions&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Maynard,%20J.%20D.&rft.date=2020-08&rft.volume=148&rft.issue=2&rft.spage=627&rft.epage=648&rft.pages=627-648&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0001601&rft_dat=%3Cproquest_scita%3E2439635220%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439635220&rft_id=info:pmid/&rfr_iscdi=true