Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation

This paper derives and demonstrates a one-dimensional acoustic metamaterial homogenization method. The homogenization method uses a multiple-scales approximation with Hamilton's principle, a weak-form representation of the dynamic equation. While the multiple-scales approximation makes the pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2020-05, Vol.147 (5), p.3584-3593
1. Verfasser: Muhlestein, Michael B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3593
container_issue 5
container_start_page 3584
container_title The Journal of the Acoustical Society of America
container_volume 147
creator Muhlestein, Michael B.
description This paper derives and demonstrates a one-dimensional acoustic metamaterial homogenization method. The homogenization method uses a multiple-scales approximation with Hamilton's principle, a weak-form representation of the dynamic equation. While the multiple-scales approximation makes the predicted effective material properties of this method inexact, the method is shown to be highly versatile. Analytical and numerical examples are given showing the ability of the homogenization method to account for viscosity and finite-amplitude effects.
doi_str_mv 10.1121/10.0001273
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1121_10_0001273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409189587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-db5e181755c42aca5cbc5bc69effc1c673c608043b5d8d51de677cc2c8b96853</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw4Rf4BgIFbCdOnCOqCkWqxKX3yNlsqJGdpLHL69fjPs6cZnf1aVYzhFxz9sC54I9RGWNcFOkJmXApWKKkyE7JZHdNsjLPz8mF9x9xlSotJ2Qzb1uEYD6Raui3PhigDoN2OuBotKXr3vXv2JlfHUzf0Vp7bGgcFtoZG_ruxtNhNB2YwSL9MmFNNXVbG_a7B23RUz0MY_9t3N7ikpy12nq8OuqUrJ7nq9kiWb69vM6elgmkjIWkqSVyxQspIRMatIQaZA15iW0LHPIihZwplqW1bFQjeYN5UQAIUHWZK5lOye3BNr7ebNGHyhkPaK3uMOasRMZKrkqpiojeHVAYe-9HbKuYyOnxp-Ks2tW602OtEb4_wB5M2Af6j_4DcJR6Tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409189587</pqid></control><display><type>article</type><title>Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Muhlestein, Michael B.</creator><creatorcontrib>Muhlestein, Michael B.</creatorcontrib><description>This paper derives and demonstrates a one-dimensional acoustic metamaterial homogenization method. The homogenization method uses a multiple-scales approximation with Hamilton's principle, a weak-form representation of the dynamic equation. While the multiple-scales approximation makes the predicted effective material properties of this method inexact, the method is shown to be highly versatile. Analytical and numerical examples are given showing the ability of the homogenization method to account for viscosity and finite-amplitude effects.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0001273</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2020-05, Vol.147 (5), p.3584-3593</ispartof><rights>U.S. Government</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-db5e181755c42aca5cbc5bc69effc1c673c608043b5d8d51de677cc2c8b96853</citedby><cites>FETCH-LOGICAL-c300t-db5e181755c42aca5cbc5bc69effc1c673c608043b5d8d51de677cc2c8b96853</cites><orcidid>0000-0002-4742-0278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0001273$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Muhlestein, Michael B.</creatorcontrib><title>Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation</title><title>The Journal of the Acoustical Society of America</title><description>This paper derives and demonstrates a one-dimensional acoustic metamaterial homogenization method. The homogenization method uses a multiple-scales approximation with Hamilton's principle, a weak-form representation of the dynamic equation. While the multiple-scales approximation makes the predicted effective material properties of this method inexact, the method is shown to be highly versatile. Analytical and numerical examples are given showing the ability of the homogenization method to account for viscosity and finite-amplitude effects.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqVw4Rf4BgIFbCdOnCOqCkWqxKX3yNlsqJGdpLHL69fjPs6cZnf1aVYzhFxz9sC54I9RGWNcFOkJmXApWKKkyE7JZHdNsjLPz8mF9x9xlSotJ2Qzb1uEYD6Raui3PhigDoN2OuBotKXr3vXv2JlfHUzf0Vp7bGgcFtoZG_ruxtNhNB2YwSL9MmFNNXVbG_a7B23RUz0MY_9t3N7ikpy12nq8OuqUrJ7nq9kiWb69vM6elgmkjIWkqSVyxQspIRMatIQaZA15iW0LHPIihZwplqW1bFQjeYN5UQAIUHWZK5lOye3BNr7ebNGHyhkPaK3uMOasRMZKrkqpiojeHVAYe-9HbKuYyOnxp-Ks2tW602OtEb4_wB5M2Af6j_4DcJR6Tg</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Muhlestein, Michael B.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4742-0278</orcidid></search><sort><creationdate>202005</creationdate><title>Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation</title><author>Muhlestein, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-db5e181755c42aca5cbc5bc69effc1c673c608043b5d8d51de677cc2c8b96853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhlestein, Michael B.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhlestein, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2020-05</date><risdate>2020</risdate><volume>147</volume><issue>5</issue><spage>3584</spage><epage>3593</epage><pages>3584-3593</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>This paper derives and demonstrates a one-dimensional acoustic metamaterial homogenization method. The homogenization method uses a multiple-scales approximation with Hamilton's principle, a weak-form representation of the dynamic equation. While the multiple-scales approximation makes the predicted effective material properties of this method inexact, the method is shown to be highly versatile. Analytical and numerical examples are given showing the ability of the homogenization method to account for viscosity and finite-amplitude effects.</abstract><doi>10.1121/10.0001273</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4742-0278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2020-05, Vol.147 (5), p.3584-3593
issn 0001-4966
1520-8524
language eng
recordid cdi_scitation_primary_10_1121_10_0001273
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20acoustic%20metamaterial%20homogenization%20based%20on%20Hamilton's%20principle%20with%20a%20multiple%20scales%20approximation&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Muhlestein,%20Michael%20B.&rft.date=2020-05&rft.volume=147&rft.issue=5&rft.spage=3584&rft.epage=3593&rft.pages=3584-3593&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0001273&rft_dat=%3Cproquest_scita%3E2409189587%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409189587&rft_id=info:pmid/&rfr_iscdi=true