Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation
This paper derives and demonstrates a one-dimensional acoustic metamaterial homogenization method. The homogenization method uses a multiple-scales approximation with Hamilton's principle, a weak-form representation of the dynamic equation. While the multiple-scales approximation makes the pred...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2020-05, Vol.147 (5), p.3584-3593 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3593 |
---|---|
container_issue | 5 |
container_start_page | 3584 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 147 |
creator | Muhlestein, Michael B. |
description | This paper derives and demonstrates a one-dimensional acoustic metamaterial homogenization method. The homogenization method uses a multiple-scales approximation with Hamilton's principle, a weak-form representation of the dynamic equation. While the multiple-scales approximation makes the predicted effective material properties of this method inexact, the method is shown to be highly versatile. Analytical and numerical examples are given showing the ability of the homogenization method to account for viscosity and finite-amplitude effects. |
doi_str_mv | 10.1121/10.0001273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1121_10_0001273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409189587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-db5e181755c42aca5cbc5bc69effc1c673c608043b5d8d51de677cc2c8b96853</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw4Rf4BgIFbCdOnCOqCkWqxKX3yNlsqJGdpLHL69fjPs6cZnf1aVYzhFxz9sC54I9RGWNcFOkJmXApWKKkyE7JZHdNsjLPz8mF9x9xlSotJ2Qzb1uEYD6Raui3PhigDoN2OuBotKXr3vXv2JlfHUzf0Vp7bGgcFtoZG_ruxtNhNB2YwSL9MmFNNXVbG_a7B23RUz0MY_9t3N7ikpy12nq8OuqUrJ7nq9kiWb69vM6elgmkjIWkqSVyxQspIRMatIQaZA15iW0LHPIihZwplqW1bFQjeYN5UQAIUHWZK5lOye3BNr7ebNGHyhkPaK3uMOasRMZKrkqpiojeHVAYe-9HbKuYyOnxp-Ks2tW602OtEb4_wB5M2Af6j_4DcJR6Tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409189587</pqid></control><display><type>article</type><title>Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Muhlestein, Michael B.</creator><creatorcontrib>Muhlestein, Michael B.</creatorcontrib><description>This paper derives and demonstrates a one-dimensional acoustic metamaterial homogenization method. The homogenization method uses a multiple-scales approximation with Hamilton's principle, a weak-form representation of the dynamic equation. While the multiple-scales approximation makes the predicted effective material properties of this method inexact, the method is shown to be highly versatile. Analytical and numerical examples are given showing the ability of the homogenization method to account for viscosity and finite-amplitude effects.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0001273</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2020-05, Vol.147 (5), p.3584-3593</ispartof><rights>U.S. Government</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-db5e181755c42aca5cbc5bc69effc1c673c608043b5d8d51de677cc2c8b96853</citedby><cites>FETCH-LOGICAL-c300t-db5e181755c42aca5cbc5bc69effc1c673c608043b5d8d51de677cc2c8b96853</cites><orcidid>0000-0002-4742-0278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0001273$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Muhlestein, Michael B.</creatorcontrib><title>Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation</title><title>The Journal of the Acoustical Society of America</title><description>This paper derives and demonstrates a one-dimensional acoustic metamaterial homogenization method. The homogenization method uses a multiple-scales approximation with Hamilton's principle, a weak-form representation of the dynamic equation. While the multiple-scales approximation makes the predicted effective material properties of this method inexact, the method is shown to be highly versatile. Analytical and numerical examples are given showing the ability of the homogenization method to account for viscosity and finite-amplitude effects.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqVw4Rf4BgIFbCdOnCOqCkWqxKX3yNlsqJGdpLHL69fjPs6cZnf1aVYzhFxz9sC54I9RGWNcFOkJmXApWKKkyE7JZHdNsjLPz8mF9x9xlSotJ2Qzb1uEYD6Raui3PhigDoN2OuBotKXr3vXv2JlfHUzf0Vp7bGgcFtoZG_ruxtNhNB2YwSL9MmFNNXVbG_a7B23RUz0MY_9t3N7ikpy12nq8OuqUrJ7nq9kiWb69vM6elgmkjIWkqSVyxQspIRMatIQaZA15iW0LHPIihZwplqW1bFQjeYN5UQAIUHWZK5lOye3BNr7ebNGHyhkPaK3uMOasRMZKrkqpiojeHVAYe-9HbKuYyOnxp-Ks2tW602OtEb4_wB5M2Af6j_4DcJR6Tg</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Muhlestein, Michael B.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4742-0278</orcidid></search><sort><creationdate>202005</creationdate><title>Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation</title><author>Muhlestein, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-db5e181755c42aca5cbc5bc69effc1c673c608043b5d8d51de677cc2c8b96853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhlestein, Michael B.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhlestein, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2020-05</date><risdate>2020</risdate><volume>147</volume><issue>5</issue><spage>3584</spage><epage>3593</epage><pages>3584-3593</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>This paper derives and demonstrates a one-dimensional acoustic metamaterial homogenization method. The homogenization method uses a multiple-scales approximation with Hamilton's principle, a weak-form representation of the dynamic equation. While the multiple-scales approximation makes the predicted effective material properties of this method inexact, the method is shown to be highly versatile. Analytical and numerical examples are given showing the ability of the homogenization method to account for viscosity and finite-amplitude effects.</abstract><doi>10.1121/10.0001273</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4742-0278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2020-05, Vol.147 (5), p.3584-3593 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_scitation_primary_10_1121_10_0001273 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
title | Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20acoustic%20metamaterial%20homogenization%20based%20on%20Hamilton's%20principle%20with%20a%20multiple%20scales%20approximation&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Muhlestein,%20Michael%20B.&rft.date=2020-05&rft.volume=147&rft.issue=5&rft.spage=3584&rft.epage=3593&rft.pages=3584-3593&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0001273&rft_dat=%3Cproquest_scita%3E2409189587%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409189587&rft_id=info:pmid/&rfr_iscdi=true |