What is the boundary condition for the radial wave function of the Schrödinger equation?

There is much discussion in the mathematical physics literature as well as in quantum mechanics textbooks on spherically symmetric potentials. Nevertheless, there is no consensus about the behavior of the radial function at the origin, particularly for singular potentials. A careful derivation of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physics 2011-06, Vol.79 (6), p.668-671
Hauptverfasser: Khelashvili, Anzor A., Nadareishvili, Teimuraz P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 671
container_issue 6
container_start_page 668
container_title American journal of physics
container_volume 79
creator Khelashvili, Anzor A.
Nadareishvili, Teimuraz P.
description There is much discussion in the mathematical physics literature as well as in quantum mechanics textbooks on spherically symmetric potentials. Nevertheless, there is no consensus about the behavior of the radial function at the origin, particularly for singular potentials. A careful derivation of the radial Schrödinger equation leads to the appearance of a delta function term when the Laplace operator is written in spherical coordinates. As a result, regardless of the behavior of the potential, an additional constraint is imposed on the radial wave function in the form of a vanishing boundary condition at the origin.
doi_str_mv 10.1119/1.3546099
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1119_1_3546099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377798391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-98a65046652494f9d8fc4c3f8372c0042ee1a435d1710a94ee7d2b47ce5e907d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yC4U5ia68xkJVK8QcGFirgKaS42pU6myUzFF_MFfDGn06ILwdXh8H38h_MDcIzRCGMszvGIcpYjIXbAAAtGMyKQ2AUDhBDJBEd8HxykNO9WgUs0AC_PM9VAn2Azs3Aa2sqo-AF1qIxvfKigC7FHURmvFvBdrSx0baV7GFzPHvQsfn0aX73aCO2yVWt4cQj2nFoke7SdQ_B0ffU4vs0m9zd348tJpinJm0yUKueI5TknTDAnTOk009SVtCAaIUasxYpRbnCBkRLM2sKQKSu05VagwtAhONnk1jEsW5saOQ9trLqTsiwIZSLnZSedbiQdQ0rROllH_9a9KjGS6-IkltviOvds4ybtm_6XH3kV4q8oa-P-k_8mfwNNO3w1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872349658</pqid></control><display><type>article</type><title>What is the boundary condition for the radial wave function of the Schrödinger equation?</title><source>American Institute of Physics (AIP) Journals</source><creator>Khelashvili, Anzor A. ; Nadareishvili, Teimuraz P.</creator><creatorcontrib>Khelashvili, Anzor A. ; Nadareishvili, Teimuraz P.</creatorcontrib><description>There is much discussion in the mathematical physics literature as well as in quantum mechanics textbooks on spherically symmetric potentials. Nevertheless, there is no consensus about the behavior of the radial function at the origin, particularly for singular potentials. A careful derivation of the radial Schrödinger equation leads to the appearance of a delta function term when the Laplace operator is written in spherical coordinates. As a result, regardless of the behavior of the potential, an additional constraint is imposed on the radial wave function in the form of a vanishing boundary condition at the origin.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.3546099</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Boundary conditions ; Laplace transforms ; Quantum physics ; Schrodinger equation</subject><ispartof>American journal of physics, 2011-06, Vol.79 (6), p.668-671</ispartof><rights>American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-98a65046652494f9d8fc4c3f8372c0042ee1a435d1710a94ee7d2b47ce5e907d3</citedby><cites>FETCH-LOGICAL-c326t-98a65046652494f9d8fc4c3f8372c0042ee1a435d1710a94ee7d2b47ce5e907d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ajp/article-lookup/doi/10.1119/1.3546099$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids></links><search><creatorcontrib>Khelashvili, Anzor A.</creatorcontrib><creatorcontrib>Nadareishvili, Teimuraz P.</creatorcontrib><title>What is the boundary condition for the radial wave function of the Schrödinger equation?</title><title>American journal of physics</title><description>There is much discussion in the mathematical physics literature as well as in quantum mechanics textbooks on spherically symmetric potentials. Nevertheless, there is no consensus about the behavior of the radial function at the origin, particularly for singular potentials. A careful derivation of the radial Schrödinger equation leads to the appearance of a delta function term when the Laplace operator is written in spherical coordinates. As a result, regardless of the behavior of the potential, an additional constraint is imposed on the radial wave function in the form of a vanishing boundary condition at the origin.</description><subject>Boundary conditions</subject><subject>Laplace transforms</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL3yC4U5ia68xkJVK8QcGFirgKaS42pU6myUzFF_MFfDGn06ILwdXh8H38h_MDcIzRCGMszvGIcpYjIXbAAAtGMyKQ2AUDhBDJBEd8HxykNO9WgUs0AC_PM9VAn2Azs3Aa2sqo-AF1qIxvfKigC7FHURmvFvBdrSx0baV7GFzPHvQsfn0aX73aCO2yVWt4cQj2nFoke7SdQ_B0ffU4vs0m9zd348tJpinJm0yUKueI5TknTDAnTOk009SVtCAaIUasxYpRbnCBkRLM2sKQKSu05VagwtAhONnk1jEsW5saOQ9trLqTsiwIZSLnZSedbiQdQ0rROllH_9a9KjGS6-IkltviOvds4ybtm_6XH3kV4q8oa-P-k_8mfwNNO3w1</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Khelashvili, Anzor A.</creator><creator>Nadareishvili, Teimuraz P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110601</creationdate><title>What is the boundary condition for the radial wave function of the Schrödinger equation?</title><author>Khelashvili, Anzor A. ; Nadareishvili, Teimuraz P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-98a65046652494f9d8fc4c3f8372c0042ee1a435d1710a94ee7d2b47ce5e907d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary conditions</topic><topic>Laplace transforms</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khelashvili, Anzor A.</creatorcontrib><creatorcontrib>Nadareishvili, Teimuraz P.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khelashvili, Anzor A.</au><au>Nadareishvili, Teimuraz P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What is the boundary condition for the radial wave function of the Schrödinger equation?</atitle><jtitle>American journal of physics</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>79</volume><issue>6</issue><spage>668</spage><epage>671</epage><pages>668-671</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>There is much discussion in the mathematical physics literature as well as in quantum mechanics textbooks on spherically symmetric potentials. Nevertheless, there is no consensus about the behavior of the radial function at the origin, particularly for singular potentials. A careful derivation of the radial Schrödinger equation leads to the appearance of a delta function term when the Laplace operator is written in spherical coordinates. As a result, regardless of the behavior of the potential, an additional constraint is imposed on the radial wave function in the form of a vanishing boundary condition at the origin.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.3546099</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2011-06, Vol.79 (6), p.668-671
issn 0002-9505
1943-2909
language eng
recordid cdi_scitation_primary_10_1119_1_3546099
source American Institute of Physics (AIP) Journals
subjects Boundary conditions
Laplace transforms
Quantum physics
Schrodinger equation
title What is the boundary condition for the radial wave function of the Schrödinger equation?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20is%20the%20boundary%20condition%20for%20the%20radial%20wave%20function%20of%20the%20Schr%C3%B6dinger%20equation?&rft.jtitle=American%20journal%20of%20physics&rft.au=Khelashvili,%20Anzor%20A.&rft.date=2011-06-01&rft.volume=79&rft.issue=6&rft.spage=668&rft.epage=671&rft.pages=668-671&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.3546099&rft_dat=%3Cproquest_scita%3E2377798391%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872349658&rft_id=info:pmid/&rfr_iscdi=true