The whole-partial derivative

We discuss two types of partial derivatives which occur, e.g., in the Euler–Lagrange equations. To avoid confusion, a different notation (ðF/ðx μ ) and a new name (whole-partial derivative) are suggested for what is usually written as ∂F/∂x μ but acts on both the explicit and implicit dependence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physics 1999-07, Vol.67 (7), p.639-641
1. Verfasser: Brownstein, K. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 7
container_start_page 639
container_title American journal of physics
container_volume 67
creator Brownstein, K. R.
description We discuss two types of partial derivatives which occur, e.g., in the Euler–Lagrange equations. To avoid confusion, a different notation (ðF/ðx μ ) and a new name (whole-partial derivative) are suggested for what is usually written as ∂F/∂x μ but acts on both the explicit and implicit dependence of F upon the coordinate x μ .
doi_str_mv 10.1119/1.19337
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1119_1_19337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>43124132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-d4128e07abd2236dac5daf0ec23a57a199ce3d2c6d726679e570509309de35043</originalsourceid><addsrcrecordid>eNp9z09LxDAQBfAgCtZV_AIeFi966TqTNOnOURb_wYKX9RxikrJd6qYm3Yrf3mrVgwdPw8CP93iMnSLMEJGucIYkRLnHMqRC5JyA9lkGADwnCfKQHaW0GV7COWTsbLX207d1aHzemtjVppk6H-vedHXvj9lBZZrkT77vhD3d3qwW9_ny8e5hcb3MrcB5l7sC-dxDaZ4d50I5Y6UzFXjLhZGlQSLrheNWuZIrVZKXJUggAeS8kFCICTsfc9sYXnc-dXoTdnE7VGqOShHxAgZ0MSIbQ0rRV7qN9YuJ7xpBfy7XqL-WD_JylMnW3TAkbH9pH-IP062r_qN_Uz8AKoBjfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216699240</pqid></control><display><type>article</type><title>The whole-partial derivative</title><source>AIP Journals Complete</source><creator>Brownstein, K. R.</creator><creatorcontrib>Brownstein, K. R.</creatorcontrib><description>We discuss two types of partial derivatives which occur, e.g., in the Euler–Lagrange equations. To avoid confusion, a different notation (ðF/ðx μ ) and a new name (whole-partial derivative) are suggested for what is usually written as ∂F/∂x μ but acts on both the explicit and implicit dependence of F upon the coordinate x μ .</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.19337</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Physics</subject><ispartof>American journal of physics, 1999-07, Vol.67 (7), p.639-641</ispartof><rights>American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Jul 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-d4128e07abd2236dac5daf0ec23a57a199ce3d2c6d726679e570509309de35043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ajp/article-lookup/doi/10.1119/1.19337$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Brownstein, K. R.</creatorcontrib><title>The whole-partial derivative</title><title>American journal of physics</title><description>We discuss two types of partial derivatives which occur, e.g., in the Euler–Lagrange equations. To avoid confusion, a different notation (ðF/ðx μ ) and a new name (whole-partial derivative) are suggested for what is usually written as ∂F/∂x μ but acts on both the explicit and implicit dependence of F upon the coordinate x μ .</description><subject>Physics</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9z09LxDAQBfAgCtZV_AIeFi966TqTNOnOURb_wYKX9RxikrJd6qYm3Yrf3mrVgwdPw8CP93iMnSLMEJGucIYkRLnHMqRC5JyA9lkGADwnCfKQHaW0GV7COWTsbLX207d1aHzemtjVppk6H-vedHXvj9lBZZrkT77vhD3d3qwW9_ny8e5hcb3MrcB5l7sC-dxDaZ4d50I5Y6UzFXjLhZGlQSLrheNWuZIrVZKXJUggAeS8kFCICTsfc9sYXnc-dXoTdnE7VGqOShHxAgZ0MSIbQ0rRV7qN9YuJ7xpBfy7XqL-WD_JylMnW3TAkbH9pH-IP062r_qN_Uz8AKoBjfw</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Brownstein, K. R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990701</creationdate><title>The whole-partial derivative</title><author>Brownstein, K. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-d4128e07abd2236dac5daf0ec23a57a199ce3d2c6d726679e570509309de35043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brownstein, K. R.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brownstein, K. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The whole-partial derivative</atitle><jtitle>American journal of physics</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>67</volume><issue>7</issue><spage>639</spage><epage>641</epage><pages>639-641</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>We discuss two types of partial derivatives which occur, e.g., in the Euler–Lagrange equations. To avoid confusion, a different notation (ðF/ðx μ ) and a new name (whole-partial derivative) are suggested for what is usually written as ∂F/∂x μ but acts on both the explicit and implicit dependence of F upon the coordinate x μ .</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.19337</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 1999-07, Vol.67 (7), p.639-641
issn 0002-9505
1943-2909
language eng
recordid cdi_scitation_primary_10_1119_1_19337
source AIP Journals Complete
subjects Physics
title The whole-partial derivative
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20whole-partial%20derivative&rft.jtitle=American%20journal%20of%20physics&rft.au=Brownstein,%20K.%20R.&rft.date=1999-07-01&rft.volume=67&rft.issue=7&rft.spage=639&rft.epage=641&rft.pages=639-641&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.19337&rft_dat=%3Cproquest_scita%3E43124132%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216699240&rft_id=info:pmid/&rfr_iscdi=true