Towards two-dimensional brachytherapy dosimetry using plastic scintillator: New highly efficient water equivalent plastic scintillator materials
Plastic scintillator (PS) has been proposed for both one- and two-dimensional (1D and 2D) dose measurements for radiation therapy applications. For low-energy photon modalities (e.g., brachytherapy), an efficient water equivalent scintillator is needed. To perform 2D measurements, a high localizatio...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 1999-08, Vol.26 (8), p.1515-1523 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1523 |
---|---|
container_issue | 8 |
container_start_page | 1515 |
container_title | Medical physics (Lancaster) |
container_volume | 26 |
creator | Kirov, A. S. Hurlbut, C. Dempsey, J. F. Shrinivas, S. B. Epstein, J. W. Binns, W. R. Dowkontt, P. F. Williamson, J. F. |
description | Plastic scintillator (PS) has been proposed for both one- and two-dimensional (1D and 2D) dose measurements for radiation therapy applications. For low-energy photon modalities (e.g., brachytherapy), an efficient water equivalent scintillator is needed. To perform 2D measurements, a high localization of the scintillation process is required. Guided by comparison of the mass energy absorption coefficients as a function of energy and of the dose distribution as a function of distance from the radioactive source, as modeled by Monte Carlo photon transport simulation, a small quantity of medium atomic number (Z) atoms (4% Cl) was incorporated in a polyvinyl toluene (PVT) based PS to approximate closely (within 10%) the radiological properties of water in the 20–662 keV energy range. However, the scintillation efficiency of commercial PS mixtures drops as much as 70% when loaded with high atomic number additives. We developed experimental techniques to assess the scintillation efficiency and locality of 15 new PS mixtures. These mixtures differ by the type of the scintillation dyes and the type of compound containing the medium Z atoms (chlorine). To achieve higher material stability, 4-chlorostyrene was used as a loading compound to ensure polymerization with the PVT base. Two of the new PS materials exhibited scintillation efficiencies within 30% of one of the most efficient commercially available products (BC-400), which is not water equivalent at such low energies. These new scintillator materials are promising candidates for the development of an accurate and efficient radiation dosimetry method not only for brachytherapy, but also for superficial and diagnostic applications. |
doi_str_mv | 10.1118/1.598647 |
format | Article |
fullrecord | <record><control><sourceid>wiley_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1118_1_598647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP8647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3847-5bba669cace2e05e3ba699246da3527e7dd421146d44b14c18647cb51ed2e7453</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobn6Av0ByqWBn0ibt6p0Mv2B-XMzrkianW6Rra5Kt9F_4k83oQC-cF4fDSZ7zHngQOqNkRCkdX9MRT8cxS_bQMGRJFLCQpPtoSEjKgpARPkBH1n4QQuKIk0M0oIQTX3SIvmZ1K4yy2LV1oPQSKqvrSpQ4N0IuOrcAI5oOq9r6P2c6vLK6muOmFNZpia3UldNlKVxtbvALtHih54uyw1AUWmqoHG6FA4Phc6XXotw8_LWLlxtKi9KeoIPCNzjd9mP0fn83mzwG09eHp8ntNJDRmCUBz3MRx6kUEkIgHCI_pmnIYiUiHiaQKMVCSv3MWE6ZpBs9MucUVAgJ49ExuuhzpamtNVBkjdFLYbqMkmwjNaNZL9Wj5z3arPIlqF9gb9EDVz3Q6hK6nUHZ89s277LHvQEnnPf93-2d7Lo2P9GNKqJv6fKfew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards two-dimensional brachytherapy dosimetry using plastic scintillator: New highly efficient water equivalent plastic scintillator materials</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Kirov, A. S. ; Hurlbut, C. ; Dempsey, J. F. ; Shrinivas, S. B. ; Epstein, J. W. ; Binns, W. R. ; Dowkontt, P. F. ; Williamson, J. F.</creator><creatorcontrib>Kirov, A. S. ; Hurlbut, C. ; Dempsey, J. F. ; Shrinivas, S. B. ; Epstein, J. W. ; Binns, W. R. ; Dowkontt, P. F. ; Williamson, J. F.</creatorcontrib><description>Plastic scintillator (PS) has been proposed for both one- and two-dimensional (1D and 2D) dose measurements for radiation therapy applications. For low-energy photon modalities (e.g., brachytherapy), an efficient water equivalent scintillator is needed. To perform 2D measurements, a high localization of the scintillation process is required. Guided by comparison of the mass energy absorption coefficients as a function of energy and of the dose distribution as a function of distance from the radioactive source, as modeled by Monte Carlo photon transport simulation, a small quantity of medium atomic number (Z) atoms (4% Cl) was incorporated in a polyvinyl toluene (PVT) based PS to approximate closely (within 10%) the radiological properties of water in the 20–662 keV energy range. However, the scintillation efficiency of commercial PS mixtures drops as much as 70% when loaded with high atomic number additives. We developed experimental techniques to assess the scintillation efficiency and locality of 15 new PS mixtures. These mixtures differ by the type of the scintillation dyes and the type of compound containing the medium Z atoms (chlorine). To achieve higher material stability, 4-chlorostyrene was used as a loading compound to ensure polymerization with the PVT base. Two of the new PS materials exhibited scintillation efficiencies within 30% of one of the most efficient commercially available products (BC-400), which is not water equivalent at such low energies. These new scintillator materials are promising candidates for the development of an accurate and efficient radiation dosimetry method not only for brachytherapy, but also for superficial and diagnostic applications.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.598647</identifier><identifier>PMID: 10501051</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Absorption coefficient ; biomedical materials ; Biophysical Phenomena ; Biophysics ; Brachytherapy ; brachytherapy dosimetry ; Chlorine - chemistry ; dosimetry ; Humans ; Monte Carlo Method ; Monte Carlo methods ; Optics and Photonics ; Phantoms, Imaging ; Photons ; plastic scintillator ; Plastics - chemistry ; Polymerization ; radiation therapy ; Radioactive sources ; Radiometry - methods ; Radiotherapy Planning, Computer-Assisted ; Scintillation Counting ; Scintillation detectors ; solid scintillation detectors ; Statistical properties ; Therapeutic applications, including brachytherapy ; Transport properties ; Water</subject><ispartof>Medical physics (Lancaster), 1999-08, Vol.26 (8), p.1515-1523</ispartof><rights>American Association of Physicists in Medicine</rights><rights>1999 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3847-5bba669cace2e05e3ba699246da3527e7dd421146d44b14c18647cb51ed2e7453</citedby><cites>FETCH-LOGICAL-c3847-5bba669cace2e05e3ba699246da3527e7dd421146d44b14c18647cb51ed2e7453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.598647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.598647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10501051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirov, A. S.</creatorcontrib><creatorcontrib>Hurlbut, C.</creatorcontrib><creatorcontrib>Dempsey, J. F.</creatorcontrib><creatorcontrib>Shrinivas, S. B.</creatorcontrib><creatorcontrib>Epstein, J. W.</creatorcontrib><creatorcontrib>Binns, W. R.</creatorcontrib><creatorcontrib>Dowkontt, P. F.</creatorcontrib><creatorcontrib>Williamson, J. F.</creatorcontrib><title>Towards two-dimensional brachytherapy dosimetry using plastic scintillator: New highly efficient water equivalent plastic scintillator materials</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Plastic scintillator (PS) has been proposed for both one- and two-dimensional (1D and 2D) dose measurements for radiation therapy applications. For low-energy photon modalities (e.g., brachytherapy), an efficient water equivalent scintillator is needed. To perform 2D measurements, a high localization of the scintillation process is required. Guided by comparison of the mass energy absorption coefficients as a function of energy and of the dose distribution as a function of distance from the radioactive source, as modeled by Monte Carlo photon transport simulation, a small quantity of medium atomic number (Z) atoms (4% Cl) was incorporated in a polyvinyl toluene (PVT) based PS to approximate closely (within 10%) the radiological properties of water in the 20–662 keV energy range. However, the scintillation efficiency of commercial PS mixtures drops as much as 70% when loaded with high atomic number additives. We developed experimental techniques to assess the scintillation efficiency and locality of 15 new PS mixtures. These mixtures differ by the type of the scintillation dyes and the type of compound containing the medium Z atoms (chlorine). To achieve higher material stability, 4-chlorostyrene was used as a loading compound to ensure polymerization with the PVT base. Two of the new PS materials exhibited scintillation efficiencies within 30% of one of the most efficient commercially available products (BC-400), which is not water equivalent at such low energies. These new scintillator materials are promising candidates for the development of an accurate and efficient radiation dosimetry method not only for brachytherapy, but also for superficial and diagnostic applications.</description><subject>Absorption coefficient</subject><subject>biomedical materials</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Brachytherapy</subject><subject>brachytherapy dosimetry</subject><subject>Chlorine - chemistry</subject><subject>dosimetry</subject><subject>Humans</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Optics and Photonics</subject><subject>Phantoms, Imaging</subject><subject>Photons</subject><subject>plastic scintillator</subject><subject>Plastics - chemistry</subject><subject>Polymerization</subject><subject>radiation therapy</subject><subject>Radioactive sources</subject><subject>Radiometry - methods</subject><subject>Radiotherapy Planning, Computer-Assisted</subject><subject>Scintillation Counting</subject><subject>Scintillation detectors</subject><subject>solid scintillation detectors</subject><subject>Statistical properties</subject><subject>Therapeutic applications, including brachytherapy</subject><subject>Transport properties</subject><subject>Water</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMobn6Av0ByqWBn0ibt6p0Mv2B-XMzrkianW6Rra5Kt9F_4k83oQC-cF4fDSZ7zHngQOqNkRCkdX9MRT8cxS_bQMGRJFLCQpPtoSEjKgpARPkBH1n4QQuKIk0M0oIQTX3SIvmZ1K4yy2LV1oPQSKqvrSpQ4N0IuOrcAI5oOq9r6P2c6vLK6muOmFNZpia3UldNlKVxtbvALtHih54uyw1AUWmqoHG6FA4Phc6XXotw8_LWLlxtKi9KeoIPCNzjd9mP0fn83mzwG09eHp8ntNJDRmCUBz3MRx6kUEkIgHCI_pmnIYiUiHiaQKMVCSv3MWE6ZpBs9MucUVAgJ49ExuuhzpamtNVBkjdFLYbqMkmwjNaNZL9Wj5z3arPIlqF9gb9EDVz3Q6hK6nUHZ89s277LHvQEnnPf93-2d7Lo2P9GNKqJv6fKfew</recordid><startdate>199908</startdate><enddate>199908</enddate><creator>Kirov, A. S.</creator><creator>Hurlbut, C.</creator><creator>Dempsey, J. F.</creator><creator>Shrinivas, S. B.</creator><creator>Epstein, J. W.</creator><creator>Binns, W. R.</creator><creator>Dowkontt, P. F.</creator><creator>Williamson, J. F.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199908</creationdate><title>Towards two-dimensional brachytherapy dosimetry using plastic scintillator: New highly efficient water equivalent plastic scintillator materials</title><author>Kirov, A. S. ; Hurlbut, C. ; Dempsey, J. F. ; Shrinivas, S. B. ; Epstein, J. W. ; Binns, W. R. ; Dowkontt, P. F. ; Williamson, J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3847-5bba669cace2e05e3ba699246da3527e7dd421146d44b14c18647cb51ed2e7453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Absorption coefficient</topic><topic>biomedical materials</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Brachytherapy</topic><topic>brachytherapy dosimetry</topic><topic>Chlorine - chemistry</topic><topic>dosimetry</topic><topic>Humans</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Optics and Photonics</topic><topic>Phantoms, Imaging</topic><topic>Photons</topic><topic>plastic scintillator</topic><topic>Plastics - chemistry</topic><topic>Polymerization</topic><topic>radiation therapy</topic><topic>Radioactive sources</topic><topic>Radiometry - methods</topic><topic>Radiotherapy Planning, Computer-Assisted</topic><topic>Scintillation Counting</topic><topic>Scintillation detectors</topic><topic>solid scintillation detectors</topic><topic>Statistical properties</topic><topic>Therapeutic applications, including brachytherapy</topic><topic>Transport properties</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirov, A. S.</creatorcontrib><creatorcontrib>Hurlbut, C.</creatorcontrib><creatorcontrib>Dempsey, J. F.</creatorcontrib><creatorcontrib>Shrinivas, S. B.</creatorcontrib><creatorcontrib>Epstein, J. W.</creatorcontrib><creatorcontrib>Binns, W. R.</creatorcontrib><creatorcontrib>Dowkontt, P. F.</creatorcontrib><creatorcontrib>Williamson, J. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirov, A. S.</au><au>Hurlbut, C.</au><au>Dempsey, J. F.</au><au>Shrinivas, S. B.</au><au>Epstein, J. W.</au><au>Binns, W. R.</au><au>Dowkontt, P. F.</au><au>Williamson, J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards two-dimensional brachytherapy dosimetry using plastic scintillator: New highly efficient water equivalent plastic scintillator materials</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>1999-08</date><risdate>1999</risdate><volume>26</volume><issue>8</issue><spage>1515</spage><epage>1523</epage><pages>1515-1523</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Plastic scintillator (PS) has been proposed for both one- and two-dimensional (1D and 2D) dose measurements for radiation therapy applications. For low-energy photon modalities (e.g., brachytherapy), an efficient water equivalent scintillator is needed. To perform 2D measurements, a high localization of the scintillation process is required. Guided by comparison of the mass energy absorption coefficients as a function of energy and of the dose distribution as a function of distance from the radioactive source, as modeled by Monte Carlo photon transport simulation, a small quantity of medium atomic number (Z) atoms (4% Cl) was incorporated in a polyvinyl toluene (PVT) based PS to approximate closely (within 10%) the radiological properties of water in the 20–662 keV energy range. However, the scintillation efficiency of commercial PS mixtures drops as much as 70% when loaded with high atomic number additives. We developed experimental techniques to assess the scintillation efficiency and locality of 15 new PS mixtures. These mixtures differ by the type of the scintillation dyes and the type of compound containing the medium Z atoms (chlorine). To achieve higher material stability, 4-chlorostyrene was used as a loading compound to ensure polymerization with the PVT base. Two of the new PS materials exhibited scintillation efficiencies within 30% of one of the most efficient commercially available products (BC-400), which is not water equivalent at such low energies. These new scintillator materials are promising candidates for the development of an accurate and efficient radiation dosimetry method not only for brachytherapy, but also for superficial and diagnostic applications.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>10501051</pmid><doi>10.1118/1.598647</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 1999-08, Vol.26 (8), p.1515-1523 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_scitation_primary_10_1118_1_598647 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Absorption coefficient biomedical materials Biophysical Phenomena Biophysics Brachytherapy brachytherapy dosimetry Chlorine - chemistry dosimetry Humans Monte Carlo Method Monte Carlo methods Optics and Photonics Phantoms, Imaging Photons plastic scintillator Plastics - chemistry Polymerization radiation therapy Radioactive sources Radiometry - methods Radiotherapy Planning, Computer-Assisted Scintillation Counting Scintillation detectors solid scintillation detectors Statistical properties Therapeutic applications, including brachytherapy Transport properties Water |
title | Towards two-dimensional brachytherapy dosimetry using plastic scintillator: New highly efficient water equivalent plastic scintillator materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20two-dimensional%20brachytherapy%20dosimetry%20using%20plastic%20scintillator:%20New%20highly%20efficient%20water%20equivalent%20plastic%20scintillator%20materials&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Kirov,%20A.%20S.&rft.date=1999-08&rft.volume=26&rft.issue=8&rft.spage=1515&rft.epage=1523&rft.pages=1515-1523&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.598647&rft_dat=%3Cwiley_scita%3EMP8647%3C/wiley_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/10501051&rfr_iscdi=true |