Computer-aided diagnosis in high resolution CT of the lungs

A computer-aided diagnosis (CAD) system is presented to automatically distinguish normal from abnormal tissue in high-resolution CT chest scans acquired during daily clinical practice. From high-resolution computed tomography scans of 116 patients, 657 regions of interest are extracted that are to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2003-12, Vol.30 (12), p.3081-3090
Hauptverfasser: Sluimer, Ingrid C., van Waes, Paul F., Viergever, Max A., van Ginneken, Bram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3090
container_issue 12
container_start_page 3081
container_title Medical physics (Lancaster)
container_volume 30
creator Sluimer, Ingrid C.
van Waes, Paul F.
Viergever, Max A.
van Ginneken, Bram
description A computer-aided diagnosis (CAD) system is presented to automatically distinguish normal from abnormal tissue in high-resolution CT chest scans acquired during daily clinical practice. From high-resolution computed tomography scans of 116 patients, 657 regions of interest are extracted that are to be classified as displaying either normal or abnormal lung tissue. A principled texture analysis approach is used, extracting features to describe local image structure by means of a multi-scale filter bank. The use of various classifiers and feature subsets is compared and results are evaluated with ROC analysis. Performance of the system is shown to approach that of two expert radiologists in diagnosing the local regions of interest, with an area under the ROC curve of 0.862 for the CAD scheme versus 0.877 and 0.893 for the radiologists.
doi_str_mv 10.1118/1.1624771
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1118_1_1624771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71496492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4841-cf0dba36e151655bcdd2d15f91e55f479164e01c92cc983fc8e764a185c8b7013</originalsourceid><addsrcrecordid>eNp90EtLxDAUBeAgijOOLvwDkpWg0DG3TfrAlRRfoOhiXJc0j5lI24xJq8y_t0OLCqKrs_nu4XIQOgYyB4D0AuYQhzRJYAdN-4wCGpJsF00JyWgQUsIm6MD7V0JIHDGyjyZAE4hIQqfoMrf1umuVC7iRSmJp-LKx3nhsGrwyyxV2ytuqa41tcL7AVuN2pXDVNUt_iPY0r7w6GnOGXm6uF_ld8PB0e59fPQSCphQCoYkseRQrYBAzVgopQwlMZ6AY0zTJIKaKgMhCIbI00iJVSUw5pEykZUIgmqHToXft7FunfFvUxgtVVbxRtvNFAjSLaRb28GyAwlnvndLF2pmau00BpNguVUAxLtXbk7G0K2slv-U4TQ-CAXyYSm3-bioen8fC88F7YVq-3evr5t26H34t9X_496ufoxyLLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71496492</pqid></control><display><type>article</type><title>Computer-aided diagnosis in high resolution CT of the lungs</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sluimer, Ingrid C. ; van Waes, Paul F. ; Viergever, Max A. ; van Ginneken, Bram</creator><creatorcontrib>Sluimer, Ingrid C. ; van Waes, Paul F. ; Viergever, Max A. ; van Ginneken, Bram</creatorcontrib><description>A computer-aided diagnosis (CAD) system is presented to automatically distinguish normal from abnormal tissue in high-resolution CT chest scans acquired during daily clinical practice. From high-resolution computed tomography scans of 116 patients, 657 regions of interest are extracted that are to be classified as displaying either normal or abnormal lung tissue. A principled texture analysis approach is used, extracting features to describe local image structure by means of a multi-scale filter bank. The use of various classifiers and feature subsets is compared and results are evaluated with ROC analysis. Performance of the system is shown to approach that of two expert radiologists in diagnosing the local regions of interest, with an area under the ROC curve of 0.862 for the CAD scheme versus 0.877 and 0.893 for the radiologists.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1624771</identifier><identifier>PMID: 14713074</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Algorithms ; Artificial Intelligence ; Computed radiography ; Computed tomography ; Computer aided diagnosis ; computerised tomography ; feature extraction ; high‐resolution CT ; Humans ; Image analysis ; image classification ; image texture ; lung ; Lung - diagnostic imaging ; Lung Diseases - diagnostic imaging ; Lungs ; medical image processing ; Medical imaging ; Multiscale methods ; pattern recognition ; Pattern Recognition, Automated ; Physicists ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiologists ; Reproducibility of Results ; Sensitivity and Specificity ; texture analysis ; Tissues ; vectors</subject><ispartof>Medical physics (Lancaster), 2003-12, Vol.30 (12), p.3081-3090</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2003 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4841-cf0dba36e151655bcdd2d15f91e55f479164e01c92cc983fc8e764a185c8b7013</citedby><cites>FETCH-LOGICAL-c4841-cf0dba36e151655bcdd2d15f91e55f479164e01c92cc983fc8e764a185c8b7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1624771$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1624771$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14713074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sluimer, Ingrid C.</creatorcontrib><creatorcontrib>van Waes, Paul F.</creatorcontrib><creatorcontrib>Viergever, Max A.</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><title>Computer-aided diagnosis in high resolution CT of the lungs</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>A computer-aided diagnosis (CAD) system is presented to automatically distinguish normal from abnormal tissue in high-resolution CT chest scans acquired during daily clinical practice. From high-resolution computed tomography scans of 116 patients, 657 regions of interest are extracted that are to be classified as displaying either normal or abnormal lung tissue. A principled texture analysis approach is used, extracting features to describe local image structure by means of a multi-scale filter bank. The use of various classifiers and feature subsets is compared and results are evaluated with ROC analysis. Performance of the system is shown to approach that of two expert radiologists in diagnosing the local regions of interest, with an area under the ROC curve of 0.862 for the CAD scheme versus 0.877 and 0.893 for the radiologists.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computed radiography</subject><subject>Computed tomography</subject><subject>Computer aided diagnosis</subject><subject>computerised tomography</subject><subject>feature extraction</subject><subject>high‐resolution CT</subject><subject>Humans</subject><subject>Image analysis</subject><subject>image classification</subject><subject>image texture</subject><subject>lung</subject><subject>Lung - diagnostic imaging</subject><subject>Lung Diseases - diagnostic imaging</subject><subject>Lungs</subject><subject>medical image processing</subject><subject>Medical imaging</subject><subject>Multiscale methods</subject><subject>pattern recognition</subject><subject>Pattern Recognition, Automated</subject><subject>Physicists</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiologists</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>texture analysis</subject><subject>Tissues</subject><subject>vectors</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EtLxDAUBeAgijOOLvwDkpWg0DG3TfrAlRRfoOhiXJc0j5lI24xJq8y_t0OLCqKrs_nu4XIQOgYyB4D0AuYQhzRJYAdN-4wCGpJsF00JyWgQUsIm6MD7V0JIHDGyjyZAE4hIQqfoMrf1umuVC7iRSmJp-LKx3nhsGrwyyxV2ytuqa41tcL7AVuN2pXDVNUt_iPY0r7w6GnOGXm6uF_ld8PB0e59fPQSCphQCoYkseRQrYBAzVgopQwlMZ6AY0zTJIKaKgMhCIbI00iJVSUw5pEykZUIgmqHToXft7FunfFvUxgtVVbxRtvNFAjSLaRb28GyAwlnvndLF2pmau00BpNguVUAxLtXbk7G0K2slv-U4TQ-CAXyYSm3-bioen8fC88F7YVq-3evr5t26H34t9X_496ufoxyLLw</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Sluimer, Ingrid C.</creator><creator>van Waes, Paul F.</creator><creator>Viergever, Max A.</creator><creator>van Ginneken, Bram</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200312</creationdate><title>Computer-aided diagnosis in high resolution CT of the lungs</title><author>Sluimer, Ingrid C. ; van Waes, Paul F. ; Viergever, Max A. ; van Ginneken, Bram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4841-cf0dba36e151655bcdd2d15f91e55f479164e01c92cc983fc8e764a185c8b7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computed radiography</topic><topic>Computed tomography</topic><topic>Computer aided diagnosis</topic><topic>computerised tomography</topic><topic>feature extraction</topic><topic>high‐resolution CT</topic><topic>Humans</topic><topic>Image analysis</topic><topic>image classification</topic><topic>image texture</topic><topic>lung</topic><topic>Lung - diagnostic imaging</topic><topic>Lung Diseases - diagnostic imaging</topic><topic>Lungs</topic><topic>medical image processing</topic><topic>Medical imaging</topic><topic>Multiscale methods</topic><topic>pattern recognition</topic><topic>Pattern Recognition, Automated</topic><topic>Physicists</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiologists</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>texture analysis</topic><topic>Tissues</topic><topic>vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sluimer, Ingrid C.</creatorcontrib><creatorcontrib>van Waes, Paul F.</creatorcontrib><creatorcontrib>Viergever, Max A.</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sluimer, Ingrid C.</au><au>van Waes, Paul F.</au><au>Viergever, Max A.</au><au>van Ginneken, Bram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-aided diagnosis in high resolution CT of the lungs</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2003-12</date><risdate>2003</risdate><volume>30</volume><issue>12</issue><spage>3081</spage><epage>3090</epage><pages>3081-3090</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>A computer-aided diagnosis (CAD) system is presented to automatically distinguish normal from abnormal tissue in high-resolution CT chest scans acquired during daily clinical practice. From high-resolution computed tomography scans of 116 patients, 657 regions of interest are extracted that are to be classified as displaying either normal or abnormal lung tissue. A principled texture analysis approach is used, extracting features to describe local image structure by means of a multi-scale filter bank. The use of various classifiers and feature subsets is compared and results are evaluated with ROC analysis. Performance of the system is shown to approach that of two expert radiologists in diagnosing the local regions of interest, with an area under the ROC curve of 0.862 for the CAD scheme versus 0.877 and 0.893 for the radiologists.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>14713074</pmid><doi>10.1118/1.1624771</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2003-12, Vol.30 (12), p.3081-3090
issn 0094-2405
2473-4209
language eng
recordid cdi_scitation_primary_10_1118_1_1624771
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Artificial Intelligence
Computed radiography
Computed tomography
Computer aided diagnosis
computerised tomography
feature extraction
high‐resolution CT
Humans
Image analysis
image classification
image texture
lung
Lung - diagnostic imaging
Lung Diseases - diagnostic imaging
Lungs
medical image processing
Medical imaging
Multiscale methods
pattern recognition
Pattern Recognition, Automated
Physicists
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
Radiologists
Reproducibility of Results
Sensitivity and Specificity
texture analysis
Tissues
vectors
title Computer-aided diagnosis in high resolution CT of the lungs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-aided%20diagnosis%20in%20high%20resolution%20CT%20of%20the%20lungs&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Sluimer,%20Ingrid%20C.&rft.date=2003-12&rft.volume=30&rft.issue=12&rft.spage=3081&rft.epage=3090&rft.pages=3081-3090&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1624771&rft_dat=%3Cproquest_scita%3E71496492%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71496492&rft_id=info:pmid/14713074&rfr_iscdi=true