Dose correlation for thoracic motion in radiation therapy of breast cancer
This work investigates the dose correlation for deformed objects due to thoracic motion for radiotherapy treatment of breast cancer. An analytical model has been developed to reconstruct patient anatomy based on the assumption that the body will expand or compress proportionally during respiration....
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2003-09, Vol.30 (9), p.2520-2529 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2529 |
---|---|
container_issue | 9 |
container_start_page | 2520 |
container_title | Medical physics (Lancaster) |
container_volume | 30 |
creator | Ding, Meisong Li, Jinsheng Deng, Jun Fourkal, Eugene Ma, C.-M. |
description | This work investigates the dose correlation for deformed objects due to thoracic motion for radiotherapy treatment of breast cancer. An analytical model has been developed to reconstruct patient anatomy based on the assumption that the body will expand or compress proportionally during respiration. The patient geometry at any phase during a breathing pattern is reconstructed using the CT data taken at the inspiration and expiration phases and the breathing level which can be related to the measured chest wall motion. A correlation between the voxels in the inspiration (or expiration) geometry and the voxels in the reconstructed geometry at any phase of the breathing pattern is established so that the dose can be accumulated during a treatment. The method has been implemented for treatment planning dose calculation by interfacing with a Monte Carlo code. The patient geometry files for different phases of the breathing pattern are generated and the three-dimensional dose data are obtained from the Monte Carlo simulations. The final dose distribution is reconstructed from the dose data at different breathing phases based on patient’s breathing pattern associated with chest wall movements. |
doi_str_mv | 10.1118/1.1603744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1118_1_1603744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75746543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4964-f211684605d4b26e89d48afa6d230c6a11ac1d44044602c5e00df46e354cd1203</originalsourceid><addsrcrecordid>eNp90E9LwzAYx_EgipvTg29AehIUqk_SJ2l7lPmfiR70HLIkZZW2mUmn7N1b14Je5ikQPnwf-BFyTOGCUppd0gsqIEkRd8iYYZrEyCDfJWOAHGOGwEfkIIR3ABAJh30yoshZlqc4Jo_XLthIO-9tpdrSNVHhfNQunFe61FHtNn9lE3llyh60C-vVch25Ipp7q0IbadVo6w_JXqGqYI-Gd0Lebm9ep_fx7PnuYXo1izXmAuOCUSoyFMANzpmwWW4wU4UShiWghaJUaWoQATvDNLcApkBhE47aUAbJhJz23aV3HysbWlmXQduqUo11qyBTnqLgmHTwrIfauxC8LeTSl7Xya0lB_gwnqRyG6-zJEF3Na2t-5bBUB-IefJWVXW8vyaeXIXje-6DLdjPcv9e34k_n_8SXpki-AW41kKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75746543</pqid></control><display><type>article</type><title>Dose correlation for thoracic motion in radiation therapy of breast cancer</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ding, Meisong ; Li, Jinsheng ; Deng, Jun ; Fourkal, Eugene ; Ma, C.-M.</creator><creatorcontrib>Ding, Meisong ; Li, Jinsheng ; Deng, Jun ; Fourkal, Eugene ; Ma, C.-M.</creatorcontrib><description>This work investigates the dose correlation for deformed objects due to thoracic motion for radiotherapy treatment of breast cancer. An analytical model has been developed to reconstruct patient anatomy based on the assumption that the body will expand or compress proportionally during respiration. The patient geometry at any phase during a breathing pattern is reconstructed using the CT data taken at the inspiration and expiration phases and the breathing level which can be related to the measured chest wall motion. A correlation between the voxels in the inspiration (or expiration) geometry and the voxels in the reconstructed geometry at any phase of the breathing pattern is established so that the dose can be accumulated during a treatment. The method has been implemented for treatment planning dose calculation by interfacing with a Monte Carlo code. The patient geometry files for different phases of the breathing pattern are generated and the three-dimensional dose data are obtained from the Monte Carlo simulations. The final dose distribution is reconstructed from the dose data at different breathing phases based on patient’s breathing pattern associated with chest wall movements.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1603744</identifier><identifier>PMID: 14528974</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Anatomy ; biomechanics ; Biomedical modeling ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - radiotherapy ; breathing level ; cancer ; Computed radiography ; computerised tomography ; CT phantom ; Diseases ; dose correlation ; dosimetry ; Dosimetry/exposure assessment ; General theory and mathematical aspects ; Hemodynamics ; Humans ; Locomotion ; lung ; Mammography - methods ; Medical treatment planning ; Monte Carlo methods ; Motion ; Movement ; Online Systems ; phantoms ; Phantoms, Imaging ; Physicists ; physiological models ; Pneumodyamics, respiration ; pneumodynamics ; radiation protection ; radiation therapy ; Radiation treatment ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiography, Thoracic - methods ; Radiometry - methods ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, Computer-Assisted - methods ; Reproducibility of Results ; Respiration ; Sensitivity and Specificity ; Statistics as Topic ; thoracic motion ; Thorax - physiopathology ; Tomography, X-Ray Computed - methods ; voxel correspondence</subject><ispartof>Medical physics (Lancaster), 2003-09, Vol.30 (9), p.2520-2529</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2003 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4964-f211684605d4b26e89d48afa6d230c6a11ac1d44044602c5e00df46e354cd1203</citedby><cites>FETCH-LOGICAL-c4964-f211684605d4b26e89d48afa6d230c6a11ac1d44044602c5e00df46e354cd1203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1603744$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1603744$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14528974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Meisong</creatorcontrib><creatorcontrib>Li, Jinsheng</creatorcontrib><creatorcontrib>Deng, Jun</creatorcontrib><creatorcontrib>Fourkal, Eugene</creatorcontrib><creatorcontrib>Ma, C.-M.</creatorcontrib><title>Dose correlation for thoracic motion in radiation therapy of breast cancer</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>This work investigates the dose correlation for deformed objects due to thoracic motion for radiotherapy treatment of breast cancer. An analytical model has been developed to reconstruct patient anatomy based on the assumption that the body will expand or compress proportionally during respiration. The patient geometry at any phase during a breathing pattern is reconstructed using the CT data taken at the inspiration and expiration phases and the breathing level which can be related to the measured chest wall motion. A correlation between the voxels in the inspiration (or expiration) geometry and the voxels in the reconstructed geometry at any phase of the breathing pattern is established so that the dose can be accumulated during a treatment. The method has been implemented for treatment planning dose calculation by interfacing with a Monte Carlo code. The patient geometry files for different phases of the breathing pattern are generated and the three-dimensional dose data are obtained from the Monte Carlo simulations. The final dose distribution is reconstructed from the dose data at different breathing phases based on patient’s breathing pattern associated with chest wall movements.</description><subject>Anatomy</subject><subject>biomechanics</subject><subject>Biomedical modeling</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - radiotherapy</subject><subject>breathing level</subject><subject>cancer</subject><subject>Computed radiography</subject><subject>computerised tomography</subject><subject>CT phantom</subject><subject>Diseases</subject><subject>dose correlation</subject><subject>dosimetry</subject><subject>Dosimetry/exposure assessment</subject><subject>General theory and mathematical aspects</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Locomotion</subject><subject>lung</subject><subject>Mammography - methods</subject><subject>Medical treatment planning</subject><subject>Monte Carlo methods</subject><subject>Motion</subject><subject>Movement</subject><subject>Online Systems</subject><subject>phantoms</subject><subject>Phantoms, Imaging</subject><subject>Physicists</subject><subject>physiological models</subject><subject>Pneumodyamics, respiration</subject><subject>pneumodynamics</subject><subject>radiation protection</subject><subject>radiation therapy</subject><subject>Radiation treatment</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiography, Thoracic - methods</subject><subject>Radiometry - methods</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Respiration</subject><subject>Sensitivity and Specificity</subject><subject>Statistics as Topic</subject><subject>thoracic motion</subject><subject>Thorax - physiopathology</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>voxel correspondence</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E9LwzAYx_EgipvTg29AehIUqk_SJ2l7lPmfiR70HLIkZZW2mUmn7N1b14Je5ikQPnwf-BFyTOGCUppd0gsqIEkRd8iYYZrEyCDfJWOAHGOGwEfkIIR3ABAJh30yoshZlqc4Jo_XLthIO-9tpdrSNVHhfNQunFe61FHtNn9lE3llyh60C-vVch25Ipp7q0IbadVo6w_JXqGqYI-Gd0Lebm9ep_fx7PnuYXo1izXmAuOCUSoyFMANzpmwWW4wU4UShiWghaJUaWoQATvDNLcApkBhE47aUAbJhJz23aV3HysbWlmXQduqUo11qyBTnqLgmHTwrIfauxC8LeTSl7Xya0lB_gwnqRyG6-zJEF3Na2t-5bBUB-IefJWVXW8vyaeXIXje-6DLdjPcv9e34k_n_8SXpki-AW41kKQ</recordid><startdate>200309</startdate><enddate>200309</enddate><creator>Ding, Meisong</creator><creator>Li, Jinsheng</creator><creator>Deng, Jun</creator><creator>Fourkal, Eugene</creator><creator>Ma, C.-M.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200309</creationdate><title>Dose correlation for thoracic motion in radiation therapy of breast cancer</title><author>Ding, Meisong ; Li, Jinsheng ; Deng, Jun ; Fourkal, Eugene ; Ma, C.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4964-f211684605d4b26e89d48afa6d230c6a11ac1d44044602c5e00df46e354cd1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Anatomy</topic><topic>biomechanics</topic><topic>Biomedical modeling</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - radiotherapy</topic><topic>breathing level</topic><topic>cancer</topic><topic>Computed radiography</topic><topic>computerised tomography</topic><topic>CT phantom</topic><topic>Diseases</topic><topic>dose correlation</topic><topic>dosimetry</topic><topic>Dosimetry/exposure assessment</topic><topic>General theory and mathematical aspects</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Locomotion</topic><topic>lung</topic><topic>Mammography - methods</topic><topic>Medical treatment planning</topic><topic>Monte Carlo methods</topic><topic>Motion</topic><topic>Movement</topic><topic>Online Systems</topic><topic>phantoms</topic><topic>Phantoms, Imaging</topic><topic>Physicists</topic><topic>physiological models</topic><topic>Pneumodyamics, respiration</topic><topic>pneumodynamics</topic><topic>radiation protection</topic><topic>radiation therapy</topic><topic>Radiation treatment</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiography, Thoracic - methods</topic><topic>Radiometry - methods</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Respiration</topic><topic>Sensitivity and Specificity</topic><topic>Statistics as Topic</topic><topic>thoracic motion</topic><topic>Thorax - physiopathology</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>voxel correspondence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Meisong</creatorcontrib><creatorcontrib>Li, Jinsheng</creatorcontrib><creatorcontrib>Deng, Jun</creatorcontrib><creatorcontrib>Fourkal, Eugene</creatorcontrib><creatorcontrib>Ma, C.-M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Meisong</au><au>Li, Jinsheng</au><au>Deng, Jun</au><au>Fourkal, Eugene</au><au>Ma, C.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dose correlation for thoracic motion in radiation therapy of breast cancer</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2003-09</date><risdate>2003</risdate><volume>30</volume><issue>9</issue><spage>2520</spage><epage>2529</epage><pages>2520-2529</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>This work investigates the dose correlation for deformed objects due to thoracic motion for radiotherapy treatment of breast cancer. An analytical model has been developed to reconstruct patient anatomy based on the assumption that the body will expand or compress proportionally during respiration. The patient geometry at any phase during a breathing pattern is reconstructed using the CT data taken at the inspiration and expiration phases and the breathing level which can be related to the measured chest wall motion. A correlation between the voxels in the inspiration (or expiration) geometry and the voxels in the reconstructed geometry at any phase of the breathing pattern is established so that the dose can be accumulated during a treatment. The method has been implemented for treatment planning dose calculation by interfacing with a Monte Carlo code. The patient geometry files for different phases of the breathing pattern are generated and the three-dimensional dose data are obtained from the Monte Carlo simulations. The final dose distribution is reconstructed from the dose data at different breathing phases based on patient’s breathing pattern associated with chest wall movements.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>14528974</pmid><doi>10.1118/1.1603744</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2003-09, Vol.30 (9), p.2520-2529 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_scitation_primary_10_1118_1_1603744 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Anatomy biomechanics Biomedical modeling Breast Neoplasms - diagnostic imaging Breast Neoplasms - radiotherapy breathing level cancer Computed radiography computerised tomography CT phantom Diseases dose correlation dosimetry Dosimetry/exposure assessment General theory and mathematical aspects Hemodynamics Humans Locomotion lung Mammography - methods Medical treatment planning Monte Carlo methods Motion Movement Online Systems phantoms Phantoms, Imaging Physicists physiological models Pneumodyamics, respiration pneumodynamics radiation protection radiation therapy Radiation treatment Radiographic Image Interpretation, Computer-Assisted - methods Radiography, Thoracic - methods Radiometry - methods Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted - methods Radiotherapy, Computer-Assisted - methods Reproducibility of Results Respiration Sensitivity and Specificity Statistics as Topic thoracic motion Thorax - physiopathology Tomography, X-Ray Computed - methods voxel correspondence |
title | Dose correlation for thoracic motion in radiation therapy of breast cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dose%20correlation%20for%20thoracic%20motion%20in%20radiation%20therapy%20of%20breast%20cancer&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Ding,%20Meisong&rft.date=2003-09&rft.volume=30&rft.issue=9&rft.spage=2520&rft.epage=2529&rft.pages=2520-2529&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1603744&rft_dat=%3Cproquest_scita%3E75746543%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75746543&rft_id=info:pmid/14528974&rfr_iscdi=true |