Dose correlation for thoracic motion in radiation therapy of breast cancer

This work investigates the dose correlation for deformed objects due to thoracic motion for radiotherapy treatment of breast cancer. An analytical model has been developed to reconstruct patient anatomy based on the assumption that the body will expand or compress proportionally during respiration....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2003-09, Vol.30 (9), p.2520-2529
Hauptverfasser: Ding, Meisong, Li, Jinsheng, Deng, Jun, Fourkal, Eugene, Ma, C.-M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2529
container_issue 9
container_start_page 2520
container_title Medical physics (Lancaster)
container_volume 30
creator Ding, Meisong
Li, Jinsheng
Deng, Jun
Fourkal, Eugene
Ma, C.-M.
description This work investigates the dose correlation for deformed objects due to thoracic motion for radiotherapy treatment of breast cancer. An analytical model has been developed to reconstruct patient anatomy based on the assumption that the body will expand or compress proportionally during respiration. The patient geometry at any phase during a breathing pattern is reconstructed using the CT data taken at the inspiration and expiration phases and the breathing level which can be related to the measured chest wall motion. A correlation between the voxels in the inspiration (or expiration) geometry and the voxels in the reconstructed geometry at any phase of the breathing pattern is established so that the dose can be accumulated during a treatment. The method has been implemented for treatment planning dose calculation by interfacing with a Monte Carlo code. The patient geometry files for different phases of the breathing pattern are generated and the three-dimensional dose data are obtained from the Monte Carlo simulations. The final dose distribution is reconstructed from the dose data at different breathing phases based on patient’s breathing pattern associated with chest wall movements.
doi_str_mv 10.1118/1.1603744
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1118_1_1603744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75746543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4964-f211684605d4b26e89d48afa6d230c6a11ac1d44044602c5e00df46e354cd1203</originalsourceid><addsrcrecordid>eNp90E9LwzAYx_EgipvTg29AehIUqk_SJ2l7lPmfiR70HLIkZZW2mUmn7N1b14Je5ikQPnwf-BFyTOGCUppd0gsqIEkRd8iYYZrEyCDfJWOAHGOGwEfkIIR3ABAJh30yoshZlqc4Jo_XLthIO-9tpdrSNVHhfNQunFe61FHtNn9lE3llyh60C-vVch25Ipp7q0IbadVo6w_JXqGqYI-Gd0Lebm9ep_fx7PnuYXo1izXmAuOCUSoyFMANzpmwWW4wU4UShiWghaJUaWoQATvDNLcApkBhE47aUAbJhJz23aV3HysbWlmXQduqUo11qyBTnqLgmHTwrIfauxC8LeTSl7Xya0lB_gwnqRyG6-zJEF3Na2t-5bBUB-IefJWVXW8vyaeXIXje-6DLdjPcv9e34k_n_8SXpki-AW41kKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75746543</pqid></control><display><type>article</type><title>Dose correlation for thoracic motion in radiation therapy of breast cancer</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ding, Meisong ; Li, Jinsheng ; Deng, Jun ; Fourkal, Eugene ; Ma, C.-M.</creator><creatorcontrib>Ding, Meisong ; Li, Jinsheng ; Deng, Jun ; Fourkal, Eugene ; Ma, C.-M.</creatorcontrib><description>This work investigates the dose correlation for deformed objects due to thoracic motion for radiotherapy treatment of breast cancer. An analytical model has been developed to reconstruct patient anatomy based on the assumption that the body will expand or compress proportionally during respiration. The patient geometry at any phase during a breathing pattern is reconstructed using the CT data taken at the inspiration and expiration phases and the breathing level which can be related to the measured chest wall motion. A correlation between the voxels in the inspiration (or expiration) geometry and the voxels in the reconstructed geometry at any phase of the breathing pattern is established so that the dose can be accumulated during a treatment. The method has been implemented for treatment planning dose calculation by interfacing with a Monte Carlo code. The patient geometry files for different phases of the breathing pattern are generated and the three-dimensional dose data are obtained from the Monte Carlo simulations. The final dose distribution is reconstructed from the dose data at different breathing phases based on patient’s breathing pattern associated with chest wall movements.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1603744</identifier><identifier>PMID: 14528974</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Anatomy ; biomechanics ; Biomedical modeling ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - radiotherapy ; breathing level ; cancer ; Computed radiography ; computerised tomography ; CT phantom ; Diseases ; dose correlation ; dosimetry ; Dosimetry/exposure assessment ; General theory and mathematical aspects ; Hemodynamics ; Humans ; Locomotion ; lung ; Mammography - methods ; Medical treatment planning ; Monte Carlo methods ; Motion ; Movement ; Online Systems ; phantoms ; Phantoms, Imaging ; Physicists ; physiological models ; Pneumodyamics, respiration ; pneumodynamics ; radiation protection ; radiation therapy ; Radiation treatment ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiography, Thoracic - methods ; Radiometry - methods ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, Computer-Assisted - methods ; Reproducibility of Results ; Respiration ; Sensitivity and Specificity ; Statistics as Topic ; thoracic motion ; Thorax - physiopathology ; Tomography, X-Ray Computed - methods ; voxel correspondence</subject><ispartof>Medical physics (Lancaster), 2003-09, Vol.30 (9), p.2520-2529</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2003 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4964-f211684605d4b26e89d48afa6d230c6a11ac1d44044602c5e00df46e354cd1203</citedby><cites>FETCH-LOGICAL-c4964-f211684605d4b26e89d48afa6d230c6a11ac1d44044602c5e00df46e354cd1203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1603744$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1603744$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14528974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Meisong</creatorcontrib><creatorcontrib>Li, Jinsheng</creatorcontrib><creatorcontrib>Deng, Jun</creatorcontrib><creatorcontrib>Fourkal, Eugene</creatorcontrib><creatorcontrib>Ma, C.-M.</creatorcontrib><title>Dose correlation for thoracic motion in radiation therapy of breast cancer</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>This work investigates the dose correlation for deformed objects due to thoracic motion for radiotherapy treatment of breast cancer. An analytical model has been developed to reconstruct patient anatomy based on the assumption that the body will expand or compress proportionally during respiration. The patient geometry at any phase during a breathing pattern is reconstructed using the CT data taken at the inspiration and expiration phases and the breathing level which can be related to the measured chest wall motion. A correlation between the voxels in the inspiration (or expiration) geometry and the voxels in the reconstructed geometry at any phase of the breathing pattern is established so that the dose can be accumulated during a treatment. The method has been implemented for treatment planning dose calculation by interfacing with a Monte Carlo code. The patient geometry files for different phases of the breathing pattern are generated and the three-dimensional dose data are obtained from the Monte Carlo simulations. The final dose distribution is reconstructed from the dose data at different breathing phases based on patient’s breathing pattern associated with chest wall movements.</description><subject>Anatomy</subject><subject>biomechanics</subject><subject>Biomedical modeling</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - radiotherapy</subject><subject>breathing level</subject><subject>cancer</subject><subject>Computed radiography</subject><subject>computerised tomography</subject><subject>CT phantom</subject><subject>Diseases</subject><subject>dose correlation</subject><subject>dosimetry</subject><subject>Dosimetry/exposure assessment</subject><subject>General theory and mathematical aspects</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Locomotion</subject><subject>lung</subject><subject>Mammography - methods</subject><subject>Medical treatment planning</subject><subject>Monte Carlo methods</subject><subject>Motion</subject><subject>Movement</subject><subject>Online Systems</subject><subject>phantoms</subject><subject>Phantoms, Imaging</subject><subject>Physicists</subject><subject>physiological models</subject><subject>Pneumodyamics, respiration</subject><subject>pneumodynamics</subject><subject>radiation protection</subject><subject>radiation therapy</subject><subject>Radiation treatment</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiography, Thoracic - methods</subject><subject>Radiometry - methods</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Respiration</subject><subject>Sensitivity and Specificity</subject><subject>Statistics as Topic</subject><subject>thoracic motion</subject><subject>Thorax - physiopathology</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>voxel correspondence</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E9LwzAYx_EgipvTg29AehIUqk_SJ2l7lPmfiR70HLIkZZW2mUmn7N1b14Je5ikQPnwf-BFyTOGCUppd0gsqIEkRd8iYYZrEyCDfJWOAHGOGwEfkIIR3ABAJh30yoshZlqc4Jo_XLthIO-9tpdrSNVHhfNQunFe61FHtNn9lE3llyh60C-vVch25Ipp7q0IbadVo6w_JXqGqYI-Gd0Lebm9ep_fx7PnuYXo1izXmAuOCUSoyFMANzpmwWW4wU4UShiWghaJUaWoQATvDNLcApkBhE47aUAbJhJz23aV3HysbWlmXQduqUo11qyBTnqLgmHTwrIfauxC8LeTSl7Xya0lB_gwnqRyG6-zJEF3Na2t-5bBUB-IefJWVXW8vyaeXIXje-6DLdjPcv9e34k_n_8SXpki-AW41kKQ</recordid><startdate>200309</startdate><enddate>200309</enddate><creator>Ding, Meisong</creator><creator>Li, Jinsheng</creator><creator>Deng, Jun</creator><creator>Fourkal, Eugene</creator><creator>Ma, C.-M.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200309</creationdate><title>Dose correlation for thoracic motion in radiation therapy of breast cancer</title><author>Ding, Meisong ; Li, Jinsheng ; Deng, Jun ; Fourkal, Eugene ; Ma, C.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4964-f211684605d4b26e89d48afa6d230c6a11ac1d44044602c5e00df46e354cd1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Anatomy</topic><topic>biomechanics</topic><topic>Biomedical modeling</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - radiotherapy</topic><topic>breathing level</topic><topic>cancer</topic><topic>Computed radiography</topic><topic>computerised tomography</topic><topic>CT phantom</topic><topic>Diseases</topic><topic>dose correlation</topic><topic>dosimetry</topic><topic>Dosimetry/exposure assessment</topic><topic>General theory and mathematical aspects</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Locomotion</topic><topic>lung</topic><topic>Mammography - methods</topic><topic>Medical treatment planning</topic><topic>Monte Carlo methods</topic><topic>Motion</topic><topic>Movement</topic><topic>Online Systems</topic><topic>phantoms</topic><topic>Phantoms, Imaging</topic><topic>Physicists</topic><topic>physiological models</topic><topic>Pneumodyamics, respiration</topic><topic>pneumodynamics</topic><topic>radiation protection</topic><topic>radiation therapy</topic><topic>Radiation treatment</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiography, Thoracic - methods</topic><topic>Radiometry - methods</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Respiration</topic><topic>Sensitivity and Specificity</topic><topic>Statistics as Topic</topic><topic>thoracic motion</topic><topic>Thorax - physiopathology</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>voxel correspondence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Meisong</creatorcontrib><creatorcontrib>Li, Jinsheng</creatorcontrib><creatorcontrib>Deng, Jun</creatorcontrib><creatorcontrib>Fourkal, Eugene</creatorcontrib><creatorcontrib>Ma, C.-M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Meisong</au><au>Li, Jinsheng</au><au>Deng, Jun</au><au>Fourkal, Eugene</au><au>Ma, C.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dose correlation for thoracic motion in radiation therapy of breast cancer</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2003-09</date><risdate>2003</risdate><volume>30</volume><issue>9</issue><spage>2520</spage><epage>2529</epage><pages>2520-2529</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>This work investigates the dose correlation for deformed objects due to thoracic motion for radiotherapy treatment of breast cancer. An analytical model has been developed to reconstruct patient anatomy based on the assumption that the body will expand or compress proportionally during respiration. The patient geometry at any phase during a breathing pattern is reconstructed using the CT data taken at the inspiration and expiration phases and the breathing level which can be related to the measured chest wall motion. A correlation between the voxels in the inspiration (or expiration) geometry and the voxels in the reconstructed geometry at any phase of the breathing pattern is established so that the dose can be accumulated during a treatment. The method has been implemented for treatment planning dose calculation by interfacing with a Monte Carlo code. The patient geometry files for different phases of the breathing pattern are generated and the three-dimensional dose data are obtained from the Monte Carlo simulations. The final dose distribution is reconstructed from the dose data at different breathing phases based on patient’s breathing pattern associated with chest wall movements.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>14528974</pmid><doi>10.1118/1.1603744</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2003-09, Vol.30 (9), p.2520-2529
issn 0094-2405
2473-4209
language eng
recordid cdi_scitation_primary_10_1118_1_1603744
source MEDLINE; Access via Wiley Online Library
subjects Anatomy
biomechanics
Biomedical modeling
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - radiotherapy
breathing level
cancer
Computed radiography
computerised tomography
CT phantom
Diseases
dose correlation
dosimetry
Dosimetry/exposure assessment
General theory and mathematical aspects
Hemodynamics
Humans
Locomotion
lung
Mammography - methods
Medical treatment planning
Monte Carlo methods
Motion
Movement
Online Systems
phantoms
Phantoms, Imaging
Physicists
physiological models
Pneumodyamics, respiration
pneumodynamics
radiation protection
radiation therapy
Radiation treatment
Radiographic Image Interpretation, Computer-Assisted - methods
Radiography, Thoracic - methods
Radiometry - methods
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, Computer-Assisted - methods
Reproducibility of Results
Respiration
Sensitivity and Specificity
Statistics as Topic
thoracic motion
Thorax - physiopathology
Tomography, X-Ray Computed - methods
voxel correspondence
title Dose correlation for thoracic motion in radiation therapy of breast cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dose%20correlation%20for%20thoracic%20motion%20in%20radiation%20therapy%20of%20breast%20cancer&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Ding,%20Meisong&rft.date=2003-09&rft.volume=30&rft.issue=9&rft.spage=2520&rft.epage=2529&rft.pages=2520-2529&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1603744&rft_dat=%3Cproquest_scita%3E75746543%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75746543&rft_id=info:pmid/14528974&rfr_iscdi=true