Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain
Boron neutron capture therapy (BNCT) is an experimental type of radiotherapy, presently being used to treat glioblastoma and melanoma. To improve patient safety and to determine the radiobiological characteristics of the epithermal neutron beam of Finnish BNCT facility (FiR 1) dose-response studies...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2002-11, Vol.29 (11), p.2629-2640 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2640 |
---|---|
container_issue | 11 |
container_start_page | 2629 |
container_title | Medical physics (Lancaster) |
container_volume | 29 |
creator | Seppälä, Tiina Auterinen, Iiro Aschan, Carita Serén, Tom Benczik, Judit Snellman, Marjatta Huiskamp, René Ramadan, Usama Abo Kankaanranta, Leena Joensuu, Heikki Savolainen, Sauli |
description | Boron neutron capture therapy (BNCT) is an experimental type of radiotherapy, presently being used to treat glioblastoma and melanoma. To improve patient safety and to determine the radiobiological characteristics of the epithermal neutron beam of Finnish BNCT facility (FiR 1) dose-response studies were carried on the brain of dogs before starting the clinical trials. A dose planning procedure was developed and uncertainties of the epithermal neutron-induced doses were estimated. The accuracy of the method of computing physical doses was assessed by comparing with in vivo dosimetry. Individual radiation dose plans were computed using magnetic resonance images of the heads of 15 Beagle dogs and the computational model of the FiR 1 epithermal neutron beam. For in vivo dosimetry, the thermal neutron fluences were measured using Mn activation foils and the gamma-ray doses with MCP-7s type thermoluminescent detectors placed both on the skin surface of the head and in the oral cavity. The degree of uncertainty of the reference doses at the thermal neutron maximum was estimated using a dose-planning program. The estimated uncertainty (±1 standard deviation) in the total physical reference dose was ±8.9%. The calculated and the measured dose values agreed within the uncertainties at the point of beam entry. The conclusion is that the dose delivery to the tissue can be verified in a practical and reliable fashion by placing an activation dosimeter and a TL detector at the beam entry point on the skin surface with homogeneous tissues below. However, the point doses cannot be calculated correctly in the inhomogeneous area near air cavities of the head model with this type of dose-planning program. This calls for attention in dose planning in human clinical trials in the corresponding areas. |
doi_str_mv | 10.1118/1.1517048 |
format | Article |
fullrecord | <record><control><sourceid>wiley_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1118_1_1517048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP7048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3898-60a3b1f1cf2254bda03000cc2f6605b1cf1b6820c4aac0d3af4bcf809f791f593</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgipvTg19AclXofPLSt6PMV5joQc8lTZMZaZuSdBv79kZb0Ms8JSS__J_wR-icwJwQkl2TOYlJCjw7QFPKUxZxCvkhmgLkPKIc4gk68f4TABIWwzGaEMoTmjKYIn1rvcJdLdrWtCu8Nf0HlrbphDPetri32LR4YzYWV9abRvVuh7V1WHVBKteIGrdq3btgjXOiMqI3YW81DtfhzQqXTpj2FB1pUXt1Nq4z9H5_97Z4jJYvD0-Lm2UkWZZnUQKClUQTqSmNeVkJYOHTUlKdJBCX4ZyUSUZBciEkVExoXkqdQa7TnOg4ZzN0OeRKZ713ShedM41wu4JA8d1VQYqxq2AvBtuty0ZVv3IsJ4BoAFtTq93-pOL5dQy8GryXpv_p4d_pe_HGuj_hXaXZF9Cljwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Seppälä, Tiina ; Auterinen, Iiro ; Aschan, Carita ; Serén, Tom ; Benczik, Judit ; Snellman, Marjatta ; Huiskamp, René ; Ramadan, Usama Abo ; Kankaanranta, Leena ; Joensuu, Heikki ; Savolainen, Sauli</creator><creatorcontrib>Seppälä, Tiina ; Auterinen, Iiro ; Aschan, Carita ; Serén, Tom ; Benczik, Judit ; Snellman, Marjatta ; Huiskamp, René ; Ramadan, Usama Abo ; Kankaanranta, Leena ; Joensuu, Heikki ; Savolainen, Sauli</creatorcontrib><description>Boron neutron capture therapy (BNCT) is an experimental type of radiotherapy, presently being used to treat glioblastoma and melanoma. To improve patient safety and to determine the radiobiological characteristics of the epithermal neutron beam of Finnish BNCT facility (FiR 1) dose-response studies were carried on the brain of dogs before starting the clinical trials. A dose planning procedure was developed and uncertainties of the epithermal neutron-induced doses were estimated. The accuracy of the method of computing physical doses was assessed by comparing with in vivo dosimetry. Individual radiation dose plans were computed using magnetic resonance images of the heads of 15 Beagle dogs and the computational model of the FiR 1 epithermal neutron beam. For in vivo dosimetry, the thermal neutron fluences were measured using Mn activation foils and the gamma-ray doses with MCP-7s type thermoluminescent detectors placed both on the skin surface of the head and in the oral cavity. The degree of uncertainty of the reference doses at the thermal neutron maximum was estimated using a dose-planning program. The estimated uncertainty (±1 standard deviation) in the total physical reference dose was ±8.9%. The calculated and the measured dose values agreed within the uncertainties at the point of beam entry. The conclusion is that the dose delivery to the tissue can be verified in a practical and reliable fashion by placing an activation dosimeter and a TL detector at the beam entry point on the skin surface with homogeneous tissues below. However, the point doses cannot be calculated correctly in the inhomogeneous area near air cavities of the head model with this type of dose-planning program. This calls for attention in dose planning in human clinical trials in the corresponding areas.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1517048</identifier><identifier>PMID: 12462730</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Animals ; Boron ; boron neutron capture therapy ; Boron Neutron Capture Therapy - methods ; brain ; Brain - radiation effects ; Dogs ; dose planning ; dose verification ; dosimetry ; Dosimetry/exposure assessment ; epithermal neutrons ; Gamma rays ; Magnetic Resonance Imaging - methods ; Medical radiation safety ; Monte Carlo methods ; Neutron radiation effects ; neutron transport theory ; Neutrons ; radiation therapy ; Radiometry - instrumentation ; Radiometry - methods ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Skin ; Thermoluminescent Dosimetry - methods ; Tissues ; Treatment strategy</subject><ispartof>Medical physics (Lancaster), 2002-11, Vol.29 (11), p.2629-2640</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2002 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3898-60a3b1f1cf2254bda03000cc2f6605b1cf1b6820c4aac0d3af4bcf809f791f593</citedby><cites>FETCH-LOGICAL-c3898-60a3b1f1cf2254bda03000cc2f6605b1cf1b6820c4aac0d3af4bcf809f791f593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1517048$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1517048$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12462730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seppälä, Tiina</creatorcontrib><creatorcontrib>Auterinen, Iiro</creatorcontrib><creatorcontrib>Aschan, Carita</creatorcontrib><creatorcontrib>Serén, Tom</creatorcontrib><creatorcontrib>Benczik, Judit</creatorcontrib><creatorcontrib>Snellman, Marjatta</creatorcontrib><creatorcontrib>Huiskamp, René</creatorcontrib><creatorcontrib>Ramadan, Usama Abo</creatorcontrib><creatorcontrib>Kankaanranta, Leena</creatorcontrib><creatorcontrib>Joensuu, Heikki</creatorcontrib><creatorcontrib>Savolainen, Sauli</creatorcontrib><title>Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Boron neutron capture therapy (BNCT) is an experimental type of radiotherapy, presently being used to treat glioblastoma and melanoma. To improve patient safety and to determine the radiobiological characteristics of the epithermal neutron beam of Finnish BNCT facility (FiR 1) dose-response studies were carried on the brain of dogs before starting the clinical trials. A dose planning procedure was developed and uncertainties of the epithermal neutron-induced doses were estimated. The accuracy of the method of computing physical doses was assessed by comparing with in vivo dosimetry. Individual radiation dose plans were computed using magnetic resonance images of the heads of 15 Beagle dogs and the computational model of the FiR 1 epithermal neutron beam. For in vivo dosimetry, the thermal neutron fluences were measured using Mn activation foils and the gamma-ray doses with MCP-7s type thermoluminescent detectors placed both on the skin surface of the head and in the oral cavity. The degree of uncertainty of the reference doses at the thermal neutron maximum was estimated using a dose-planning program. The estimated uncertainty (±1 standard deviation) in the total physical reference dose was ±8.9%. The calculated and the measured dose values agreed within the uncertainties at the point of beam entry. The conclusion is that the dose delivery to the tissue can be verified in a practical and reliable fashion by placing an activation dosimeter and a TL detector at the beam entry point on the skin surface with homogeneous tissues below. However, the point doses cannot be calculated correctly in the inhomogeneous area near air cavities of the head model with this type of dose-planning program. This calls for attention in dose planning in human clinical trials in the corresponding areas.</description><subject>Animals</subject><subject>Boron</subject><subject>boron neutron capture therapy</subject><subject>Boron Neutron Capture Therapy - methods</subject><subject>brain</subject><subject>Brain - radiation effects</subject><subject>Dogs</subject><subject>dose planning</subject><subject>dose verification</subject><subject>dosimetry</subject><subject>Dosimetry/exposure assessment</subject><subject>epithermal neutrons</subject><subject>Gamma rays</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical radiation safety</subject><subject>Monte Carlo methods</subject><subject>Neutron radiation effects</subject><subject>neutron transport theory</subject><subject>Neutrons</subject><subject>radiation therapy</subject><subject>Radiometry - instrumentation</subject><subject>Radiometry - methods</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Skin</subject><subject>Thermoluminescent Dosimetry - methods</subject><subject>Tissues</subject><subject>Treatment strategy</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1LwzAYB_AgipvTg19AclXofPLSt6PMV5joQc8lTZMZaZuSdBv79kZb0Ms8JSS__J_wR-icwJwQkl2TOYlJCjw7QFPKUxZxCvkhmgLkPKIc4gk68f4TABIWwzGaEMoTmjKYIn1rvcJdLdrWtCu8Nf0HlrbphDPetri32LR4YzYWV9abRvVuh7V1WHVBKteIGrdq3btgjXOiMqI3YW81DtfhzQqXTpj2FB1pUXt1Nq4z9H5_97Z4jJYvD0-Lm2UkWZZnUQKClUQTqSmNeVkJYOHTUlKdJBCX4ZyUSUZBciEkVExoXkqdQa7TnOg4ZzN0OeRKZ713ShedM41wu4JA8d1VQYqxq2AvBtuty0ZVv3IsJ4BoAFtTq93-pOL5dQy8GryXpv_p4d_pe_HGuj_hXaXZF9Cljwo</recordid><startdate>200211</startdate><enddate>200211</enddate><creator>Seppälä, Tiina</creator><creator>Auterinen, Iiro</creator><creator>Aschan, Carita</creator><creator>Serén, Tom</creator><creator>Benczik, Judit</creator><creator>Snellman, Marjatta</creator><creator>Huiskamp, René</creator><creator>Ramadan, Usama Abo</creator><creator>Kankaanranta, Leena</creator><creator>Joensuu, Heikki</creator><creator>Savolainen, Sauli</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200211</creationdate><title>Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain</title><author>Seppälä, Tiina ; Auterinen, Iiro ; Aschan, Carita ; Serén, Tom ; Benczik, Judit ; Snellman, Marjatta ; Huiskamp, René ; Ramadan, Usama Abo ; Kankaanranta, Leena ; Joensuu, Heikki ; Savolainen, Sauli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3898-60a3b1f1cf2254bda03000cc2f6605b1cf1b6820c4aac0d3af4bcf809f791f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Boron</topic><topic>boron neutron capture therapy</topic><topic>Boron Neutron Capture Therapy - methods</topic><topic>brain</topic><topic>Brain - radiation effects</topic><topic>Dogs</topic><topic>dose planning</topic><topic>dose verification</topic><topic>dosimetry</topic><topic>Dosimetry/exposure assessment</topic><topic>epithermal neutrons</topic><topic>Gamma rays</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical radiation safety</topic><topic>Monte Carlo methods</topic><topic>Neutron radiation effects</topic><topic>neutron transport theory</topic><topic>Neutrons</topic><topic>radiation therapy</topic><topic>Radiometry - instrumentation</topic><topic>Radiometry - methods</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Skin</topic><topic>Thermoluminescent Dosimetry - methods</topic><topic>Tissues</topic><topic>Treatment strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seppälä, Tiina</creatorcontrib><creatorcontrib>Auterinen, Iiro</creatorcontrib><creatorcontrib>Aschan, Carita</creatorcontrib><creatorcontrib>Serén, Tom</creatorcontrib><creatorcontrib>Benczik, Judit</creatorcontrib><creatorcontrib>Snellman, Marjatta</creatorcontrib><creatorcontrib>Huiskamp, René</creatorcontrib><creatorcontrib>Ramadan, Usama Abo</creatorcontrib><creatorcontrib>Kankaanranta, Leena</creatorcontrib><creatorcontrib>Joensuu, Heikki</creatorcontrib><creatorcontrib>Savolainen, Sauli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seppälä, Tiina</au><au>Auterinen, Iiro</au><au>Aschan, Carita</au><au>Serén, Tom</au><au>Benczik, Judit</au><au>Snellman, Marjatta</au><au>Huiskamp, René</au><au>Ramadan, Usama Abo</au><au>Kankaanranta, Leena</au><au>Joensuu, Heikki</au><au>Savolainen, Sauli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2002-11</date><risdate>2002</risdate><volume>29</volume><issue>11</issue><spage>2629</spage><epage>2640</epage><pages>2629-2640</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Boron neutron capture therapy (BNCT) is an experimental type of radiotherapy, presently being used to treat glioblastoma and melanoma. To improve patient safety and to determine the radiobiological characteristics of the epithermal neutron beam of Finnish BNCT facility (FiR 1) dose-response studies were carried on the brain of dogs before starting the clinical trials. A dose planning procedure was developed and uncertainties of the epithermal neutron-induced doses were estimated. The accuracy of the method of computing physical doses was assessed by comparing with in vivo dosimetry. Individual radiation dose plans were computed using magnetic resonance images of the heads of 15 Beagle dogs and the computational model of the FiR 1 epithermal neutron beam. For in vivo dosimetry, the thermal neutron fluences were measured using Mn activation foils and the gamma-ray doses with MCP-7s type thermoluminescent detectors placed both on the skin surface of the head and in the oral cavity. The degree of uncertainty of the reference doses at the thermal neutron maximum was estimated using a dose-planning program. The estimated uncertainty (±1 standard deviation) in the total physical reference dose was ±8.9%. The calculated and the measured dose values agreed within the uncertainties at the point of beam entry. The conclusion is that the dose delivery to the tissue can be verified in a practical and reliable fashion by placing an activation dosimeter and a TL detector at the beam entry point on the skin surface with homogeneous tissues below. However, the point doses cannot be calculated correctly in the inhomogeneous area near air cavities of the head model with this type of dose-planning program. This calls for attention in dose planning in human clinical trials in the corresponding areas.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>12462730</pmid><doi>10.1118/1.1517048</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2002-11, Vol.29 (11), p.2629-2640 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_scitation_primary_10_1118_1_1517048 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Boron boron neutron capture therapy Boron Neutron Capture Therapy - methods brain Brain - radiation effects Dogs dose planning dose verification dosimetry Dosimetry/exposure assessment epithermal neutrons Gamma rays Magnetic Resonance Imaging - methods Medical radiation safety Monte Carlo methods Neutron radiation effects neutron transport theory Neutrons radiation therapy Radiometry - instrumentation Radiometry - methods Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted - methods Reproducibility of Results Sensitivity and Specificity Skin Thermoluminescent Dosimetry - methods Tissues Treatment strategy |
title | Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dose%20planning%20with%20comparison%20to%20in%20vivo%20dosimetry%20for%20epithermal%20neutron%20irradiation%20of%20the%20dog%20brain&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Sepp%C3%A4l%C3%A4,%20Tiina&rft.date=2002-11&rft.volume=29&rft.issue=11&rft.spage=2629&rft.epage=2640&rft.pages=2629-2640&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1517048&rft_dat=%3Cwiley_scita%3EMP7048%3C/wiley_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/12462730&rfr_iscdi=true |