Computerized lesion detection on breast ultrasound

We investigated the use of a radial gradient index (RGI) filtering technique to automatically detect lesions on breast ultrasound. After initial RGI filtering, a sensitivity of 87% at 0.76 false-positive detections per image was obtained on a database of 400 patients (757 images). Next, lesion candi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2002-07, Vol.29 (7), p.1438-1446
Hauptverfasser: Drukker, Karen, Giger, Maryellen L., Horsch, Karla, Kupinski, Matthew A., Vyborny, Carl J., Mendelson, Ellen B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1446
container_issue 7
container_start_page 1438
container_title Medical physics (Lancaster)
container_volume 29
creator Drukker, Karen
Giger, Maryellen L.
Horsch, Karla
Kupinski, Matthew A.
Vyborny, Carl J.
Mendelson, Ellen B.
description We investigated the use of a radial gradient index (RGI) filtering technique to automatically detect lesions on breast ultrasound. After initial RGI filtering, a sensitivity of 87% at 0.76 false-positive detections per image was obtained on a database of 400 patients (757 images). Next, lesion candidates were segmented from the background by maximizing an average radial gradient (ARD) index for regions grown from the detected points. At an overlap of 0.4 with a radiologist lesion outline, 75% of the lesions were correctly detected. Subsequently, round robin analysis was used to assess the quality of the classification of lesion candidates into actual lesions and false-positives by a Bayesian neural network. The round robin analysis yielded an A z value of 0.84, and an overall performance by case of 94% sensitivity at 0.48 false-positives per image. Use of computerized analysis of breast sonograms may ultimately facilitate the use of sonography in breast cancer screening programs.
doi_str_mv 10.1118/1.1485995
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1118_1_1485995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71956853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4185-9cf2fad1550e1bfdd445b8b6c06a5609d4abb0834df0d239c3b301794f41413a3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgijOOLnwBmZWg0DEnl7ZZyuANRnSh65ArVNppTVplfHo7tKggCoGTxXd-Dj9Cx4AXAJBfwAJYzoXgO2hKWEYTRrDYRVOMBUsIw3yCDmJ8wRinlON9NAHSL2SETRFZ1lXTtS4UH87OSxeLej23rnWm3f76p4NTsZ13ZRtUrLu1PUR7XpXRHY1zhp6vr56Wt8nq4eZueblKDIOcJ8J44pUFzrED7a1ljOtcpwaniqdYWKa0xjll1mNLqDBUUwyZYJ4BA6roDJ0OuU2oXzsXW1kV0biyVGtXd1FmIHiac9rDswGaUMcYnJdNKCoVNhKw3BYkQY4F9fZkDO105ey3HBvpQTKA96J0m7-T5P3jGHg--GiKVm1L-9p5q8MP31j_H_596iej8YlD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71956853</pqid></control><display><type>article</type><title>Computerized lesion detection on breast ultrasound</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Drukker, Karen ; Giger, Maryellen L. ; Horsch, Karla ; Kupinski, Matthew A. ; Vyborny, Carl J. ; Mendelson, Ellen B.</creator><creatorcontrib>Drukker, Karen ; Giger, Maryellen L. ; Horsch, Karla ; Kupinski, Matthew A. ; Vyborny, Carl J. ; Mendelson, Ellen B.</creatorcontrib><description>We investigated the use of a radial gradient index (RGI) filtering technique to automatically detect lesions on breast ultrasound. After initial RGI filtering, a sensitivity of 87% at 0.76 false-positive detections per image was obtained on a database of 400 patients (757 images). Next, lesion candidates were segmented from the background by maximizing an average radial gradient (ARD) index for regions grown from the detected points. At an overlap of 0.4 with a radiologist lesion outline, 75% of the lesions were correctly detected. Subsequently, round robin analysis was used to assess the quality of the classification of lesion candidates into actual lesions and false-positives by a Bayesian neural network. The round robin analysis yielded an A z value of 0.84, and an overall performance by case of 94% sensitivity at 0.48 false-positives per image. Use of computerized analysis of breast sonograms may ultimately facilitate the use of sonography in breast cancer screening programs.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1485995</identifier><identifier>PMID: 12148724</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Artificial neural networks ; Bayes methods ; Bayes Theorem ; biological tissues ; biomedical ultrasonics ; Breast Neoplasms - diagnosis ; Breast Neoplasms - diagnostic imaging ; breast sonography ; cancer ; computer‐aided diagnosis ; Databases as Topic ; Diseases ; False Positive Reactions ; Female ; Humans ; Image analysis ; image classification ; Image Processing, Computer-Assisted ; image segmentation ; Mammography ; Mass Screening ; Medical diagnosis with acoustics ; medical image processing ; Medical imaging ; Models, Statistical ; neural nets ; Neural networks, fuzzy logic, artificial intelligence ; performance of lesion detection ; Physicists ; Probability theory ; Probability theory, stochastic processes, and statistics ; Radiologists ; ROC Curve ; Sensitivity and Specificity ; Software ; Ultrasonography ; Ultrasonography - methods</subject><ispartof>Medical physics (Lancaster), 2002-07, Vol.29 (7), p.1438-1446</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2002 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4185-9cf2fad1550e1bfdd445b8b6c06a5609d4abb0834df0d239c3b301794f41413a3</citedby><cites>FETCH-LOGICAL-c4185-9cf2fad1550e1bfdd445b8b6c06a5609d4abb0834df0d239c3b301794f41413a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1485995$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1485995$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12148724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drukker, Karen</creatorcontrib><creatorcontrib>Giger, Maryellen L.</creatorcontrib><creatorcontrib>Horsch, Karla</creatorcontrib><creatorcontrib>Kupinski, Matthew A.</creatorcontrib><creatorcontrib>Vyborny, Carl J.</creatorcontrib><creatorcontrib>Mendelson, Ellen B.</creatorcontrib><title>Computerized lesion detection on breast ultrasound</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>We investigated the use of a radial gradient index (RGI) filtering technique to automatically detect lesions on breast ultrasound. After initial RGI filtering, a sensitivity of 87% at 0.76 false-positive detections per image was obtained on a database of 400 patients (757 images). Next, lesion candidates were segmented from the background by maximizing an average radial gradient (ARD) index for regions grown from the detected points. At an overlap of 0.4 with a radiologist lesion outline, 75% of the lesions were correctly detected. Subsequently, round robin analysis was used to assess the quality of the classification of lesion candidates into actual lesions and false-positives by a Bayesian neural network. The round robin analysis yielded an A z value of 0.84, and an overall performance by case of 94% sensitivity at 0.48 false-positives per image. Use of computerized analysis of breast sonograms may ultimately facilitate the use of sonography in breast cancer screening programs.</description><subject>Artificial neural networks</subject><subject>Bayes methods</subject><subject>Bayes Theorem</subject><subject>biological tissues</subject><subject>biomedical ultrasonics</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>breast sonography</subject><subject>cancer</subject><subject>computer‐aided diagnosis</subject><subject>Databases as Topic</subject><subject>Diseases</subject><subject>False Positive Reactions</subject><subject>Female</subject><subject>Humans</subject><subject>Image analysis</subject><subject>image classification</subject><subject>Image Processing, Computer-Assisted</subject><subject>image segmentation</subject><subject>Mammography</subject><subject>Mass Screening</subject><subject>Medical diagnosis with acoustics</subject><subject>medical image processing</subject><subject>Medical imaging</subject><subject>Models, Statistical</subject><subject>neural nets</subject><subject>Neural networks, fuzzy logic, artificial intelligence</subject><subject>performance of lesion detection</subject><subject>Physicists</subject><subject>Probability theory</subject><subject>Probability theory, stochastic processes, and statistics</subject><subject>Radiologists</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><subject>Ultrasonography</subject><subject>Ultrasonography - methods</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKxDAUBuAgijOOLnwBmZWg0DEnl7ZZyuANRnSh65ArVNppTVplfHo7tKggCoGTxXd-Dj9Cx4AXAJBfwAJYzoXgO2hKWEYTRrDYRVOMBUsIw3yCDmJ8wRinlON9NAHSL2SETRFZ1lXTtS4UH87OSxeLej23rnWm3f76p4NTsZ13ZRtUrLu1PUR7XpXRHY1zhp6vr56Wt8nq4eZueblKDIOcJ8J44pUFzrED7a1ljOtcpwaniqdYWKa0xjll1mNLqDBUUwyZYJ4BA6roDJ0OuU2oXzsXW1kV0biyVGtXd1FmIHiac9rDswGaUMcYnJdNKCoVNhKw3BYkQY4F9fZkDO105ey3HBvpQTKA96J0m7-T5P3jGHg--GiKVm1L-9p5q8MP31j_H_596iej8YlD</recordid><startdate>200207</startdate><enddate>200207</enddate><creator>Drukker, Karen</creator><creator>Giger, Maryellen L.</creator><creator>Horsch, Karla</creator><creator>Kupinski, Matthew A.</creator><creator>Vyborny, Carl J.</creator><creator>Mendelson, Ellen B.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200207</creationdate><title>Computerized lesion detection on breast ultrasound</title><author>Drukker, Karen ; Giger, Maryellen L. ; Horsch, Karla ; Kupinski, Matthew A. ; Vyborny, Carl J. ; Mendelson, Ellen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4185-9cf2fad1550e1bfdd445b8b6c06a5609d4abb0834df0d239c3b301794f41413a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Artificial neural networks</topic><topic>Bayes methods</topic><topic>Bayes Theorem</topic><topic>biological tissues</topic><topic>biomedical ultrasonics</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>breast sonography</topic><topic>cancer</topic><topic>computer‐aided diagnosis</topic><topic>Databases as Topic</topic><topic>Diseases</topic><topic>False Positive Reactions</topic><topic>Female</topic><topic>Humans</topic><topic>Image analysis</topic><topic>image classification</topic><topic>Image Processing, Computer-Assisted</topic><topic>image segmentation</topic><topic>Mammography</topic><topic>Mass Screening</topic><topic>Medical diagnosis with acoustics</topic><topic>medical image processing</topic><topic>Medical imaging</topic><topic>Models, Statistical</topic><topic>neural nets</topic><topic>Neural networks, fuzzy logic, artificial intelligence</topic><topic>performance of lesion detection</topic><topic>Physicists</topic><topic>Probability theory</topic><topic>Probability theory, stochastic processes, and statistics</topic><topic>Radiologists</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><topic>Ultrasonography</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drukker, Karen</creatorcontrib><creatorcontrib>Giger, Maryellen L.</creatorcontrib><creatorcontrib>Horsch, Karla</creatorcontrib><creatorcontrib>Kupinski, Matthew A.</creatorcontrib><creatorcontrib>Vyborny, Carl J.</creatorcontrib><creatorcontrib>Mendelson, Ellen B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drukker, Karen</au><au>Giger, Maryellen L.</au><au>Horsch, Karla</au><au>Kupinski, Matthew A.</au><au>Vyborny, Carl J.</au><au>Mendelson, Ellen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computerized lesion detection on breast ultrasound</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2002-07</date><risdate>2002</risdate><volume>29</volume><issue>7</issue><spage>1438</spage><epage>1446</epage><pages>1438-1446</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>We investigated the use of a radial gradient index (RGI) filtering technique to automatically detect lesions on breast ultrasound. After initial RGI filtering, a sensitivity of 87% at 0.76 false-positive detections per image was obtained on a database of 400 patients (757 images). Next, lesion candidates were segmented from the background by maximizing an average radial gradient (ARD) index for regions grown from the detected points. At an overlap of 0.4 with a radiologist lesion outline, 75% of the lesions were correctly detected. Subsequently, round robin analysis was used to assess the quality of the classification of lesion candidates into actual lesions and false-positives by a Bayesian neural network. The round robin analysis yielded an A z value of 0.84, and an overall performance by case of 94% sensitivity at 0.48 false-positives per image. Use of computerized analysis of breast sonograms may ultimately facilitate the use of sonography in breast cancer screening programs.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>12148724</pmid><doi>10.1118/1.1485995</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2002-07, Vol.29 (7), p.1438-1446
issn 0094-2405
2473-4209
language eng
recordid cdi_scitation_primary_10_1118_1_1485995
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Artificial neural networks
Bayes methods
Bayes Theorem
biological tissues
biomedical ultrasonics
Breast Neoplasms - diagnosis
Breast Neoplasms - diagnostic imaging
breast sonography
cancer
computer‐aided diagnosis
Databases as Topic
Diseases
False Positive Reactions
Female
Humans
Image analysis
image classification
Image Processing, Computer-Assisted
image segmentation
Mammography
Mass Screening
Medical diagnosis with acoustics
medical image processing
Medical imaging
Models, Statistical
neural nets
Neural networks, fuzzy logic, artificial intelligence
performance of lesion detection
Physicists
Probability theory
Probability theory, stochastic processes, and statistics
Radiologists
ROC Curve
Sensitivity and Specificity
Software
Ultrasonography
Ultrasonography - methods
title Computerized lesion detection on breast ultrasound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computerized%20lesion%20detection%20on%20breast%20ultrasound&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Drukker,%20Karen&rft.date=2002-07&rft.volume=29&rft.issue=7&rft.spage=1438&rft.epage=1446&rft.pages=1438-1446&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1485995&rft_dat=%3Cproquest_scita%3E71956853%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71956853&rft_id=info:pmid/12148724&rfr_iscdi=true