Novel process integration flow of germanium-on-silicon FinFETs for low-power technologies

Germanium channel FinFET transistors process integration on a silicon substrate is a promising candidate to extend the complementary metal–oxide–semiconductor semiconductor roadmap. This process has utilized the legacy of state-of-art silicon fabrication process technology and can be an immediate so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science and technology. B, Nanotechnology & microelectronics Nanotechnology & microelectronics, 2023-09, Vol.41 (5)
Hauptverfasser: Choudhary, Sumit, Yogesh, Midathala, Schwarz, Daniel, Funk, Hannes S., Ghosh, Subrata, Sharma, Satinder K., Schulze, Jörg, Gonsalves, Kenneth E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of vacuum science and technology. B, Nanotechnology & microelectronics
container_volume 41
creator Choudhary, Sumit
Yogesh, Midathala
Schwarz, Daniel
Funk, Hannes S.
Ghosh, Subrata
Sharma, Satinder K.
Schulze, Jörg
Gonsalves, Kenneth E.
description Germanium channel FinFET transistors process integration on a silicon substrate is a promising candidate to extend the complementary metal–oxide–semiconductor semiconductor roadmap. This process has utilized the legacy of state-of-art silicon fabrication process technology and can be an immediate solution to integrate beyond Si channel materials over standard Si wafers. The fabrication of such devices involves several complicated technological steps, such as strain-free epi layers over the Si substrate to limit the substrate leakage and patterning of narrow and sharp fins over germanium (Ge). To overcome these issues, the active p-type germanium layers were grown over n-type germanium and virtual substrates. The poly ((4-(methacryloyloxy) phenyl) dimethyl sulfoniumtriflate) was utilized as a polymeric negative tone e-beam resist for sub-20 nm critical dimensions with low line edge roughness, line width roughness, and high etch resistance to pattern p-Ge fins to meet these concerns. Here, the devices use the mesa architecture that will allow low bandgap materials only at the active regions and raised fins to reduce the active area interaction with the substrate to suppress leakage currents. This paper discusses the simple five-layer process flow to fabricate FinFET devices with critical optimizations like resist prerequisite optimization conditions before exposure, alignment of various layers by electron beam alignment, pattern transfer optimizations using reactive ion etching, and bilayer resist for desired lift-off. The Ge-on-Si FinFET devices are fabricated with a width and gate length of 15/90 nm, respectively. The devices exhibit the improved ION/IOFF in order of ∼105, transconductance Gm ∼86 μS/μm, and subthreshold slope close to ∼90 mV/dec.
doi_str_mv 10.1116/6.0002767
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1116_6_0002767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_6_0002767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-7d8244b0a85b1625ce4e3d8bcb22d06dc550bbaec2794af1ee0b1eccbc9dd513</originalsourceid><addsrcrecordid>eNp90FFLwzAQB_AgCo65B79BXhUykzRJ20cZzglDX_biU0mu1xppm5FUh9_e6oaPPt3B_e7g_oRcC74UQpg7s-Scy9zkZ2QmhTFM5lqd__XKXJJFSu8T4qbQPOMz8vocPrGj-xgAU6J-GLGNdvRhoE0XDjQ0tMXY28F_9CwMLPnOwzRc-2H9sEu0CZFOju3DASMdEd6G0IXWY7oiF43tEi5OdU5208Zqw7Yvj0-r-y0DWZYjy-tCKuW4LbQTRmpAhVldOHBS1tzUoDV3ziLIvFS2EYjcCQRwUNa1Ftmc3BzPQgwpRWyqffS9jV-V4NVPKpWpTqlM9vZoE_jx98l_8DeVpmOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Novel process integration flow of germanium-on-silicon FinFETs for low-power technologies</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Choudhary, Sumit ; Yogesh, Midathala ; Schwarz, Daniel ; Funk, Hannes S. ; Ghosh, Subrata ; Sharma, Satinder K. ; Schulze, Jörg ; Gonsalves, Kenneth E.</creator><creatorcontrib>Choudhary, Sumit ; Yogesh, Midathala ; Schwarz, Daniel ; Funk, Hannes S. ; Ghosh, Subrata ; Sharma, Satinder K. ; Schulze, Jörg ; Gonsalves, Kenneth E.</creatorcontrib><description>Germanium channel FinFET transistors process integration on a silicon substrate is a promising candidate to extend the complementary metal–oxide–semiconductor semiconductor roadmap. This process has utilized the legacy of state-of-art silicon fabrication process technology and can be an immediate solution to integrate beyond Si channel materials over standard Si wafers. The fabrication of such devices involves several complicated technological steps, such as strain-free epi layers over the Si substrate to limit the substrate leakage and patterning of narrow and sharp fins over germanium (Ge). To overcome these issues, the active p-type germanium layers were grown over n-type germanium and virtual substrates. The poly ((4-(methacryloyloxy) phenyl) dimethyl sulfoniumtriflate) was utilized as a polymeric negative tone e-beam resist for sub-20 nm critical dimensions with low line edge roughness, line width roughness, and high etch resistance to pattern p-Ge fins to meet these concerns. Here, the devices use the mesa architecture that will allow low bandgap materials only at the active regions and raised fins to reduce the active area interaction with the substrate to suppress leakage currents. This paper discusses the simple five-layer process flow to fabricate FinFET devices with critical optimizations like resist prerequisite optimization conditions before exposure, alignment of various layers by electron beam alignment, pattern transfer optimizations using reactive ion etching, and bilayer resist for desired lift-off. The Ge-on-Si FinFET devices are fabricated with a width and gate length of 15/90 nm, respectively. The devices exhibit the improved ION/IOFF in order of ∼105, transconductance Gm ∼86 μS/μm, and subthreshold slope close to ∼90 mV/dec.</description><identifier>ISSN: 2166-2746</identifier><identifier>EISSN: 2166-2754</identifier><identifier>DOI: 10.1116/6.0002767</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><ispartof>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics, 2023-09, Vol.41 (5)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-7d8244b0a85b1625ce4e3d8bcb22d06dc550bbaec2794af1ee0b1eccbc9dd513</citedby><cites>FETCH-LOGICAL-c299t-7d8244b0a85b1625ce4e3d8bcb22d06dc550bbaec2794af1ee0b1eccbc9dd513</cites><orcidid>0000-0002-5488-5014 ; 0000-0003-3621-7888 ; 0000-0002-3127-4691 ; 0000-0002-2335-3082 ; 0000-0003-2702-4697 ; 0000-0001-9313-5550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Choudhary, Sumit</creatorcontrib><creatorcontrib>Yogesh, Midathala</creatorcontrib><creatorcontrib>Schwarz, Daniel</creatorcontrib><creatorcontrib>Funk, Hannes S.</creatorcontrib><creatorcontrib>Ghosh, Subrata</creatorcontrib><creatorcontrib>Sharma, Satinder K.</creatorcontrib><creatorcontrib>Schulze, Jörg</creatorcontrib><creatorcontrib>Gonsalves, Kenneth E.</creatorcontrib><title>Novel process integration flow of germanium-on-silicon FinFETs for low-power technologies</title><title>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics</title><description>Germanium channel FinFET transistors process integration on a silicon substrate is a promising candidate to extend the complementary metal–oxide–semiconductor semiconductor roadmap. This process has utilized the legacy of state-of-art silicon fabrication process technology and can be an immediate solution to integrate beyond Si channel materials over standard Si wafers. The fabrication of such devices involves several complicated technological steps, such as strain-free epi layers over the Si substrate to limit the substrate leakage and patterning of narrow and sharp fins over germanium (Ge). To overcome these issues, the active p-type germanium layers were grown over n-type germanium and virtual substrates. The poly ((4-(methacryloyloxy) phenyl) dimethyl sulfoniumtriflate) was utilized as a polymeric negative tone e-beam resist for sub-20 nm critical dimensions with low line edge roughness, line width roughness, and high etch resistance to pattern p-Ge fins to meet these concerns. Here, the devices use the mesa architecture that will allow low bandgap materials only at the active regions and raised fins to reduce the active area interaction with the substrate to suppress leakage currents. This paper discusses the simple five-layer process flow to fabricate FinFET devices with critical optimizations like resist prerequisite optimization conditions before exposure, alignment of various layers by electron beam alignment, pattern transfer optimizations using reactive ion etching, and bilayer resist for desired lift-off. The Ge-on-Si FinFET devices are fabricated with a width and gate length of 15/90 nm, respectively. The devices exhibit the improved ION/IOFF in order of ∼105, transconductance Gm ∼86 μS/μm, and subthreshold slope close to ∼90 mV/dec.</description><issn>2166-2746</issn><issn>2166-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90FFLwzAQB_AgCo65B79BXhUykzRJ20cZzglDX_biU0mu1xppm5FUh9_e6oaPPt3B_e7g_oRcC74UQpg7s-Scy9zkZ2QmhTFM5lqd__XKXJJFSu8T4qbQPOMz8vocPrGj-xgAU6J-GLGNdvRhoE0XDjQ0tMXY28F_9CwMLPnOwzRc-2H9sEu0CZFOju3DASMdEd6G0IXWY7oiF43tEi5OdU5208Zqw7Yvj0-r-y0DWZYjy-tCKuW4LbQTRmpAhVldOHBS1tzUoDV3ziLIvFS2EYjcCQRwUNa1Ftmc3BzPQgwpRWyqffS9jV-V4NVPKpWpTqlM9vZoE_jx98l_8DeVpmOs</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Choudhary, Sumit</creator><creator>Yogesh, Midathala</creator><creator>Schwarz, Daniel</creator><creator>Funk, Hannes S.</creator><creator>Ghosh, Subrata</creator><creator>Sharma, Satinder K.</creator><creator>Schulze, Jörg</creator><creator>Gonsalves, Kenneth E.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5488-5014</orcidid><orcidid>https://orcid.org/0000-0003-3621-7888</orcidid><orcidid>https://orcid.org/0000-0002-3127-4691</orcidid><orcidid>https://orcid.org/0000-0002-2335-3082</orcidid><orcidid>https://orcid.org/0000-0003-2702-4697</orcidid><orcidid>https://orcid.org/0000-0001-9313-5550</orcidid></search><sort><creationdate>202309</creationdate><title>Novel process integration flow of germanium-on-silicon FinFETs for low-power technologies</title><author>Choudhary, Sumit ; Yogesh, Midathala ; Schwarz, Daniel ; Funk, Hannes S. ; Ghosh, Subrata ; Sharma, Satinder K. ; Schulze, Jörg ; Gonsalves, Kenneth E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-7d8244b0a85b1625ce4e3d8bcb22d06dc550bbaec2794af1ee0b1eccbc9dd513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhary, Sumit</creatorcontrib><creatorcontrib>Yogesh, Midathala</creatorcontrib><creatorcontrib>Schwarz, Daniel</creatorcontrib><creatorcontrib>Funk, Hannes S.</creatorcontrib><creatorcontrib>Ghosh, Subrata</creatorcontrib><creatorcontrib>Sharma, Satinder K.</creatorcontrib><creatorcontrib>Schulze, Jörg</creatorcontrib><creatorcontrib>Gonsalves, Kenneth E.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhary, Sumit</au><au>Yogesh, Midathala</au><au>Schwarz, Daniel</au><au>Funk, Hannes S.</au><au>Ghosh, Subrata</au><au>Sharma, Satinder K.</au><au>Schulze, Jörg</au><au>Gonsalves, Kenneth E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel process integration flow of germanium-on-silicon FinFETs for low-power technologies</atitle><jtitle>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics</jtitle><date>2023-09</date><risdate>2023</risdate><volume>41</volume><issue>5</issue><issn>2166-2746</issn><eissn>2166-2754</eissn><coden>JVTBD9</coden><abstract>Germanium channel FinFET transistors process integration on a silicon substrate is a promising candidate to extend the complementary metal–oxide–semiconductor semiconductor roadmap. This process has utilized the legacy of state-of-art silicon fabrication process technology and can be an immediate solution to integrate beyond Si channel materials over standard Si wafers. The fabrication of such devices involves several complicated technological steps, such as strain-free epi layers over the Si substrate to limit the substrate leakage and patterning of narrow and sharp fins over germanium (Ge). To overcome these issues, the active p-type germanium layers were grown over n-type germanium and virtual substrates. The poly ((4-(methacryloyloxy) phenyl) dimethyl sulfoniumtriflate) was utilized as a polymeric negative tone e-beam resist for sub-20 nm critical dimensions with low line edge roughness, line width roughness, and high etch resistance to pattern p-Ge fins to meet these concerns. Here, the devices use the mesa architecture that will allow low bandgap materials only at the active regions and raised fins to reduce the active area interaction with the substrate to suppress leakage currents. This paper discusses the simple five-layer process flow to fabricate FinFET devices with critical optimizations like resist prerequisite optimization conditions before exposure, alignment of various layers by electron beam alignment, pattern transfer optimizations using reactive ion etching, and bilayer resist for desired lift-off. The Ge-on-Si FinFET devices are fabricated with a width and gate length of 15/90 nm, respectively. The devices exhibit the improved ION/IOFF in order of ∼105, transconductance Gm ∼86 μS/μm, and subthreshold slope close to ∼90 mV/dec.</abstract><doi>10.1116/6.0002767</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5488-5014</orcidid><orcidid>https://orcid.org/0000-0003-3621-7888</orcidid><orcidid>https://orcid.org/0000-0002-3127-4691</orcidid><orcidid>https://orcid.org/0000-0002-2335-3082</orcidid><orcidid>https://orcid.org/0000-0003-2702-4697</orcidid><orcidid>https://orcid.org/0000-0001-9313-5550</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2166-2746
ispartof Journal of vacuum science and technology. B, Nanotechnology & microelectronics, 2023-09, Vol.41 (5)
issn 2166-2746
2166-2754
language eng
recordid cdi_scitation_primary_10_1116_6_0002767
source AIP Journals Complete; Alma/SFX Local Collection
title Novel process integration flow of germanium-on-silicon FinFETs for low-power technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20process%20integration%20flow%20of%20germanium-on-silicon%20FinFETs%20for%20low-power%20technologies&rft.jtitle=Journal%20of%20vacuum%20science%20and%20technology.%20B,%20Nanotechnology%20&%20microelectronics&rft.au=Choudhary,%20Sumit&rft.date=2023-09&rft.volume=41&rft.issue=5&rft.issn=2166-2746&rft.eissn=2166-2754&rft.coden=JVTBD9&rft_id=info:doi/10.1116/6.0002767&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_6_0002767%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true