X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane

Novel nanocarbons such as fullerenes, nanotubes, graphene, and nanodiamond reside at the cutting edge of nanoscience and technology. Along with chemical functionalization, geometric constraints (such as extreme curvature in nanotubes or defects within or at the surfaces of diamond nanoparticles) sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2021-09, Vol.39 (5)
Hauptverfasser: Willey, Trevor M., Lee, Jonathan R. I., Brehmer, Daniel, Paredes Mellone, Oscar A., Landt, Lasse, Schreiner, Peter R., Fokin, Andrey A., Tkachenko, Boryslav A., de Meijere, Armin, Kozhushkov, Sergei, van Buuren, Anthony W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 39
creator Willey, Trevor M.
Lee, Jonathan R. I.
Brehmer, Daniel
Paredes Mellone, Oscar A.
Landt, Lasse
Schreiner, Peter R.
Fokin, Andrey A.
Tkachenko, Boryslav A.
de Meijere, Armin
Kozhushkov, Sergei
van Buuren, Anthony W.
description Novel nanocarbons such as fullerenes, nanotubes, graphene, and nanodiamond reside at the cutting edge of nanoscience and technology. Along with chemical functionalization, geometric constraints (such as extreme curvature in nanotubes or defects within or at the surfaces of diamond nanoparticles) significantly alter the electronic states of the nanocarbon material. Understanding the effects of steric strain on the electronic structure is critical to developing nanoelectronic applications based on these materials. This paper presents a fundamental study of how strain affects the electronic structure in a benchmark series of some fundamental saturated carbon cage compounds. Adamantane, C10H16, the smallest diamondoid and arguably the smallest nanodiamond crystallite, has carbon atoms essentially commensurate with diamond lattice positions and possesses by far the least molecular strain of this series. Twistane also is a C10H16 isomer but the fixed cyclohexane twist conformation of the central ring introduces additional strain into the cage. Octahedrane [(CH)12] and cubane [(CH)8] are considerably more strained, culminating in cubane where carbon–carbon bonds lie either parallel or orthogonal to one another. Using gas-phase near-edge x-ray absorption fine structure spectroscopy to probe the unoccupied electronic states, we observe two major progressions across this series. First, a broad C–C σ* resonance in the absorption splits into two more narrow and intense resonances with increasing strain. Second, the first manifold of states previously associated with tertiary C–H σ* in the diamondoid series appears to broaden and shift to lower energy. This feature is more than twice as intense in cubane than in octahedrane, even though these two molecules have only tertiary carbons, with the chemical formula (CH)x. The spectral differences are entirely due to the shape of the molecules; in particular, in cubane, the features arise from a high degree of p-p interaction between parallel C–C bonds. In contrast to the conventional wisdom that near-edge x-ray absorption is primarily an atomically localized spectroscopy, molecular shape and associated strain lead to the dominant features in spectra acquired from this fundamental series of carbon cage structures.
doi_str_mv 10.1116/6.0001150
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1116_6_0001150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_6_0001150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-7cb7694a7366d0a6dfe2661451e747ceb80f17f908a39a52dce8a9d71b04592b3</originalsourceid><addsrcrecordid>eNqd0ctKBDEQBdAgCo6PhX8Q3Cm2Jv1Iut2J-ALBjYK7prpSrZGZZEgyip_kX5p2BPeucgMnFbjF2IEUp1JKdaZOhRBSNmKDzWRTiqJtmm6TzYSu6qKUQm6znRjfMipLoWbs67kI8MnjkjAFH9EvLXJryCU7WoRkveN-5DEFsI6DM1NcYVoFKgaIZHig6B04pMgnwSMFm_P0CDKDlA1CGLwrEF6IL_yccDWneM4vDCzAJXB0wtOHjevkMcErmfBzmX7E1ZDzHtsaYR5p__fcZU_XV4-Xt8X9w83d5cV9gVWpUqFx0KqrQVdKGQHKjFQqJetGkq410tCKUeqxEy1UHTSlQWqhM1oOom66cqh22eF6ro_J9hFtInxF71xuqJetbOtWZ3S0RphLi4HGfhnsAsJnL0U_LaJX_e8isj1e22nWT6P_w-8-_MF-acbqG5ysmc8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Willey, Trevor M. ; Lee, Jonathan R. I. ; Brehmer, Daniel ; Paredes Mellone, Oscar A. ; Landt, Lasse ; Schreiner, Peter R. ; Fokin, Andrey A. ; Tkachenko, Boryslav A. ; de Meijere, Armin ; Kozhushkov, Sergei ; van Buuren, Anthony W.</creator><creatorcontrib>Willey, Trevor M. ; Lee, Jonathan R. I. ; Brehmer, Daniel ; Paredes Mellone, Oscar A. ; Landt, Lasse ; Schreiner, Peter R. ; Fokin, Andrey A. ; Tkachenko, Boryslav A. ; de Meijere, Armin ; Kozhushkov, Sergei ; van Buuren, Anthony W. ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Novel nanocarbons such as fullerenes, nanotubes, graphene, and nanodiamond reside at the cutting edge of nanoscience and technology. Along with chemical functionalization, geometric constraints (such as extreme curvature in nanotubes or defects within or at the surfaces of diamond nanoparticles) significantly alter the electronic states of the nanocarbon material. Understanding the effects of steric strain on the electronic structure is critical to developing nanoelectronic applications based on these materials. This paper presents a fundamental study of how strain affects the electronic structure in a benchmark series of some fundamental saturated carbon cage compounds. Adamantane, C10H16, the smallest diamondoid and arguably the smallest nanodiamond crystallite, has carbon atoms essentially commensurate with diamond lattice positions and possesses by far the least molecular strain of this series. Twistane also is a C10H16 isomer but the fixed cyclohexane twist conformation of the central ring introduces additional strain into the cage. Octahedrane [(CH)12] and cubane [(CH)8] are considerably more strained, culminating in cubane where carbon–carbon bonds lie either parallel or orthogonal to one another. Using gas-phase near-edge x-ray absorption fine structure spectroscopy to probe the unoccupied electronic states, we observe two major progressions across this series. First, a broad C–C σ* resonance in the absorption splits into two more narrow and intense resonances with increasing strain. Second, the first manifold of states previously associated with tertiary C–H σ* in the diamondoid series appears to broaden and shift to lower energy. This feature is more than twice as intense in cubane than in octahedrane, even though these two molecules have only tertiary carbons, with the chemical formula (CH)x. The spectral differences are entirely due to the shape of the molecules; in particular, in cubane, the features arise from a high degree of p-p interaction between parallel C–C bonds. In contrast to the conventional wisdom that near-edge x-ray absorption is primarily an atomically localized spectroscopy, molecular shape and associated strain lead to the dominant features in spectra acquired from this fundamental series of carbon cage structures.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/6.0001150</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><publisher>United States: American Vacuum Society / AIP</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; Carbon ; Carbon K edge spectroscopy ; Diamond X-ray spectroscopy ; Gas phase ; Isomerism ; MATERIALS SCIENCE ; Molecular geometry ; Nanoclusters ; Near edge X-ray absorption fine structure spectroscopy ; X-ray absorption spectroscopy</subject><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2021-09, Vol.39 (5)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-7cb7694a7366d0a6dfe2661451e747ceb80f17f908a39a52dce8a9d71b04592b3</citedby><cites>FETCH-LOGICAL-c326t-7cb7694a7366d0a6dfe2661451e747ceb80f17f908a39a52dce8a9d71b04592b3</cites><orcidid>0000-0002-4488-6742 ; 0000-0002-5140-0720 ; 0000-0002-3608-5515 ; 0000-0002-1862-5266 ; 0000-0002-8711-3985 ; 0000-0001-7230-9638 ; 0000-0002-9667-8830 ; 0000-0002-0659-4976 ; 0000-0001-7316-7643 ; 0000-0002-6381-8948 ; 0000000296678830 ; 0000000206594976 ; 0000000287113985 ; 0000000236085515 ; 0000000172309638 ; 0000000251400720 ; 0000000244886742 ; 0000000263818948 ; 0000000173167643 ; 0000000218625266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,791,882,4498,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1818487$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Willey, Trevor M.</creatorcontrib><creatorcontrib>Lee, Jonathan R. I.</creatorcontrib><creatorcontrib>Brehmer, Daniel</creatorcontrib><creatorcontrib>Paredes Mellone, Oscar A.</creatorcontrib><creatorcontrib>Landt, Lasse</creatorcontrib><creatorcontrib>Schreiner, Peter R.</creatorcontrib><creatorcontrib>Fokin, Andrey A.</creatorcontrib><creatorcontrib>Tkachenko, Boryslav A.</creatorcontrib><creatorcontrib>de Meijere, Armin</creatorcontrib><creatorcontrib>Kozhushkov, Sergei</creatorcontrib><creatorcontrib>van Buuren, Anthony W.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>Novel nanocarbons such as fullerenes, nanotubes, graphene, and nanodiamond reside at the cutting edge of nanoscience and technology. Along with chemical functionalization, geometric constraints (such as extreme curvature in nanotubes or defects within or at the surfaces of diamond nanoparticles) significantly alter the electronic states of the nanocarbon material. Understanding the effects of steric strain on the electronic structure is critical to developing nanoelectronic applications based on these materials. This paper presents a fundamental study of how strain affects the electronic structure in a benchmark series of some fundamental saturated carbon cage compounds. Adamantane, C10H16, the smallest diamondoid and arguably the smallest nanodiamond crystallite, has carbon atoms essentially commensurate with diamond lattice positions and possesses by far the least molecular strain of this series. Twistane also is a C10H16 isomer but the fixed cyclohexane twist conformation of the central ring introduces additional strain into the cage. Octahedrane [(CH)12] and cubane [(CH)8] are considerably more strained, culminating in cubane where carbon–carbon bonds lie either parallel or orthogonal to one another. Using gas-phase near-edge x-ray absorption fine structure spectroscopy to probe the unoccupied electronic states, we observe two major progressions across this series. First, a broad C–C σ* resonance in the absorption splits into two more narrow and intense resonances with increasing strain. Second, the first manifold of states previously associated with tertiary C–H σ* in the diamondoid series appears to broaden and shift to lower energy. This feature is more than twice as intense in cubane than in octahedrane, even though these two molecules have only tertiary carbons, with the chemical formula (CH)x. The spectral differences are entirely due to the shape of the molecules; in particular, in cubane, the features arise from a high degree of p-p interaction between parallel C–C bonds. In contrast to the conventional wisdom that near-edge x-ray absorption is primarily an atomically localized spectroscopy, molecular shape and associated strain lead to the dominant features in spectra acquired from this fundamental series of carbon cage structures.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Carbon</subject><subject>Carbon K edge spectroscopy</subject><subject>Diamond X-ray spectroscopy</subject><subject>Gas phase</subject><subject>Isomerism</subject><subject>MATERIALS SCIENCE</subject><subject>Molecular geometry</subject><subject>Nanoclusters</subject><subject>Near edge X-ray absorption fine structure spectroscopy</subject><subject>X-ray absorption spectroscopy</subject><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0ctKBDEQBdAgCo6PhX8Q3Cm2Jv1Iut2J-ALBjYK7prpSrZGZZEgyip_kX5p2BPeucgMnFbjF2IEUp1JKdaZOhRBSNmKDzWRTiqJtmm6TzYSu6qKUQm6znRjfMipLoWbs67kI8MnjkjAFH9EvLXJryCU7WoRkveN-5DEFsI6DM1NcYVoFKgaIZHig6B04pMgnwSMFm_P0CDKDlA1CGLwrEF6IL_yccDWneM4vDCzAJXB0wtOHjevkMcErmfBzmX7E1ZDzHtsaYR5p__fcZU_XV4-Xt8X9w83d5cV9gVWpUqFx0KqrQVdKGQHKjFQqJetGkq410tCKUeqxEy1UHTSlQWqhM1oOom66cqh22eF6ro_J9hFtInxF71xuqJetbOtWZ3S0RphLi4HGfhnsAsJnL0U_LaJX_e8isj1e22nWT6P_w-8-_MF-acbqG5ysmc8</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Willey, Trevor M.</creator><creator>Lee, Jonathan R. I.</creator><creator>Brehmer, Daniel</creator><creator>Paredes Mellone, Oscar A.</creator><creator>Landt, Lasse</creator><creator>Schreiner, Peter R.</creator><creator>Fokin, Andrey A.</creator><creator>Tkachenko, Boryslav A.</creator><creator>de Meijere, Armin</creator><creator>Kozhushkov, Sergei</creator><creator>van Buuren, Anthony W.</creator><general>American Vacuum Society / AIP</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4488-6742</orcidid><orcidid>https://orcid.org/0000-0002-5140-0720</orcidid><orcidid>https://orcid.org/0000-0002-3608-5515</orcidid><orcidid>https://orcid.org/0000-0002-1862-5266</orcidid><orcidid>https://orcid.org/0000-0002-8711-3985</orcidid><orcidid>https://orcid.org/0000-0001-7230-9638</orcidid><orcidid>https://orcid.org/0000-0002-9667-8830</orcidid><orcidid>https://orcid.org/0000-0002-0659-4976</orcidid><orcidid>https://orcid.org/0000-0001-7316-7643</orcidid><orcidid>https://orcid.org/0000-0002-6381-8948</orcidid><orcidid>https://orcid.org/0000000296678830</orcidid><orcidid>https://orcid.org/0000000206594976</orcidid><orcidid>https://orcid.org/0000000287113985</orcidid><orcidid>https://orcid.org/0000000236085515</orcidid><orcidid>https://orcid.org/0000000172309638</orcidid><orcidid>https://orcid.org/0000000251400720</orcidid><orcidid>https://orcid.org/0000000244886742</orcidid><orcidid>https://orcid.org/0000000263818948</orcidid><orcidid>https://orcid.org/0000000173167643</orcidid><orcidid>https://orcid.org/0000000218625266</orcidid></search><sort><creationdate>20210901</creationdate><title>X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane</title><author>Willey, Trevor M. ; Lee, Jonathan R. I. ; Brehmer, Daniel ; Paredes Mellone, Oscar A. ; Landt, Lasse ; Schreiner, Peter R. ; Fokin, Andrey A. ; Tkachenko, Boryslav A. ; de Meijere, Armin ; Kozhushkov, Sergei ; van Buuren, Anthony W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-7cb7694a7366d0a6dfe2661451e747ceb80f17f908a39a52dce8a9d71b04592b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Carbon</topic><topic>Carbon K edge spectroscopy</topic><topic>Diamond X-ray spectroscopy</topic><topic>Gas phase</topic><topic>Isomerism</topic><topic>MATERIALS SCIENCE</topic><topic>Molecular geometry</topic><topic>Nanoclusters</topic><topic>Near edge X-ray absorption fine structure spectroscopy</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willey, Trevor M.</creatorcontrib><creatorcontrib>Lee, Jonathan R. I.</creatorcontrib><creatorcontrib>Brehmer, Daniel</creatorcontrib><creatorcontrib>Paredes Mellone, Oscar A.</creatorcontrib><creatorcontrib>Landt, Lasse</creatorcontrib><creatorcontrib>Schreiner, Peter R.</creatorcontrib><creatorcontrib>Fokin, Andrey A.</creatorcontrib><creatorcontrib>Tkachenko, Boryslav A.</creatorcontrib><creatorcontrib>de Meijere, Armin</creatorcontrib><creatorcontrib>Kozhushkov, Sergei</creatorcontrib><creatorcontrib>van Buuren, Anthony W.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willey, Trevor M.</au><au>Lee, Jonathan R. I.</au><au>Brehmer, Daniel</au><au>Paredes Mellone, Oscar A.</au><au>Landt, Lasse</au><au>Schreiner, Peter R.</au><au>Fokin, Andrey A.</au><au>Tkachenko, Boryslav A.</au><au>de Meijere, Armin</au><au>Kozhushkov, Sergei</au><au>van Buuren, Anthony W.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>39</volume><issue>5</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>Novel nanocarbons such as fullerenes, nanotubes, graphene, and nanodiamond reside at the cutting edge of nanoscience and technology. Along with chemical functionalization, geometric constraints (such as extreme curvature in nanotubes or defects within or at the surfaces of diamond nanoparticles) significantly alter the electronic states of the nanocarbon material. Understanding the effects of steric strain on the electronic structure is critical to developing nanoelectronic applications based on these materials. This paper presents a fundamental study of how strain affects the electronic structure in a benchmark series of some fundamental saturated carbon cage compounds. Adamantane, C10H16, the smallest diamondoid and arguably the smallest nanodiamond crystallite, has carbon atoms essentially commensurate with diamond lattice positions and possesses by far the least molecular strain of this series. Twistane also is a C10H16 isomer but the fixed cyclohexane twist conformation of the central ring introduces additional strain into the cage. Octahedrane [(CH)12] and cubane [(CH)8] are considerably more strained, culminating in cubane where carbon–carbon bonds lie either parallel or orthogonal to one another. Using gas-phase near-edge x-ray absorption fine structure spectroscopy to probe the unoccupied electronic states, we observe two major progressions across this series. First, a broad C–C σ* resonance in the absorption splits into two more narrow and intense resonances with increasing strain. Second, the first manifold of states previously associated with tertiary C–H σ* in the diamondoid series appears to broaden and shift to lower energy. This feature is more than twice as intense in cubane than in octahedrane, even though these two molecules have only tertiary carbons, with the chemical formula (CH)x. The spectral differences are entirely due to the shape of the molecules; in particular, in cubane, the features arise from a high degree of p-p interaction between parallel C–C bonds. In contrast to the conventional wisdom that near-edge x-ray absorption is primarily an atomically localized spectroscopy, molecular shape and associated strain lead to the dominant features in spectra acquired from this fundamental series of carbon cage structures.</abstract><cop>United States</cop><pub>American Vacuum Society / AIP</pub><doi>10.1116/6.0001150</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4488-6742</orcidid><orcidid>https://orcid.org/0000-0002-5140-0720</orcidid><orcidid>https://orcid.org/0000-0002-3608-5515</orcidid><orcidid>https://orcid.org/0000-0002-1862-5266</orcidid><orcidid>https://orcid.org/0000-0002-8711-3985</orcidid><orcidid>https://orcid.org/0000-0001-7230-9638</orcidid><orcidid>https://orcid.org/0000-0002-9667-8830</orcidid><orcidid>https://orcid.org/0000-0002-0659-4976</orcidid><orcidid>https://orcid.org/0000-0001-7316-7643</orcidid><orcidid>https://orcid.org/0000-0002-6381-8948</orcidid><orcidid>https://orcid.org/0000000296678830</orcidid><orcidid>https://orcid.org/0000000206594976</orcidid><orcidid>https://orcid.org/0000000287113985</orcidid><orcidid>https://orcid.org/0000000236085515</orcidid><orcidid>https://orcid.org/0000000172309638</orcidid><orcidid>https://orcid.org/0000000251400720</orcidid><orcidid>https://orcid.org/0000000244886742</orcidid><orcidid>https://orcid.org/0000000263818948</orcidid><orcidid>https://orcid.org/0000000173167643</orcidid><orcidid>https://orcid.org/0000000218625266</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2021-09, Vol.39 (5)
issn 0734-2101
1520-8559
language eng
recordid cdi_scitation_primary_10_1116_6_0001150
source AIP Journals Complete; Alma/SFX Local Collection
subjects ATOMIC AND MOLECULAR PHYSICS
Carbon
Carbon K edge spectroscopy
Diamond X-ray spectroscopy
Gas phase
Isomerism
MATERIALS SCIENCE
Molecular geometry
Nanoclusters
Near edge X-ray absorption fine structure spectroscopy
X-ray absorption spectroscopy
title X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20spectroscopic%20identification%20of%20strain%20and%20structure-based%20resonances%20in%20a%20series%20of%20saturated%20carbon-cage%20molecules:%20Adamantane,%20twistane,%20octahedrane,%20and%20cubane&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Willey,%20Trevor%20M.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2021-09-01&rft.volume=39&rft.issue=5&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/6.0001150&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1116_6_0001150%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true