X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane
Novel nanocarbons such as fullerenes, nanotubes, graphene, and nanodiamond reside at the cutting edge of nanoscience and technology. Along with chemical functionalization, geometric constraints (such as extreme curvature in nanotubes or defects within or at the surfaces of diamond nanoparticles) sig...
Gespeichert in:
Veröffentlicht in: | Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2021-09, Vol.39 (5) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of vacuum science & technology. A, Vacuum, surfaces, and films |
container_volume | 39 |
creator | Willey, Trevor M. Lee, Jonathan R. I. Brehmer, Daniel Paredes Mellone, Oscar A. Landt, Lasse Schreiner, Peter R. Fokin, Andrey A. Tkachenko, Boryslav A. de Meijere, Armin Kozhushkov, Sergei van Buuren, Anthony W. |
description | Novel nanocarbons such as fullerenes, nanotubes, graphene, and nanodiamond reside at the cutting edge of nanoscience and technology. Along with chemical functionalization, geometric constraints (such as extreme curvature in nanotubes or defects within or at the surfaces of diamond nanoparticles) significantly alter the electronic states of the nanocarbon material. Understanding the effects of steric strain on the electronic structure is critical to developing nanoelectronic applications based on these materials. This paper presents a fundamental study of how strain affects the electronic structure in a benchmark series of some fundamental saturated carbon cage compounds. Adamantane, C10H16, the smallest diamondoid and arguably the smallest nanodiamond crystallite, has carbon atoms essentially commensurate with diamond lattice positions and possesses by far the least molecular strain of this series. Twistane also is a C10H16 isomer but the fixed cyclohexane twist conformation of the central ring introduces additional strain into the cage. Octahedrane [(CH)12] and cubane [(CH)8] are considerably more strained, culminating in cubane where carbon–carbon bonds lie either parallel or orthogonal to one another. Using gas-phase near-edge x-ray absorption fine structure spectroscopy to probe the unoccupied electronic states, we observe two major progressions across this series. First, a broad C–C σ* resonance in the absorption splits into two more narrow and intense resonances with increasing strain. Second, the first manifold of states previously associated with tertiary C–H σ* in the diamondoid series appears to broaden and shift to lower energy. This feature is more than twice as intense in cubane than in octahedrane, even though these two molecules have only tertiary carbons, with the chemical formula (CH)x. The spectral differences are entirely due to the shape of the molecules; in particular, in cubane, the features arise from a high degree of p-p interaction between parallel C–C bonds. In contrast to the conventional wisdom that near-edge x-ray absorption is primarily an atomically localized spectroscopy, molecular shape and associated strain lead to the dominant features in spectra acquired from this fundamental series of carbon cage structures. |
doi_str_mv | 10.1116/6.0001150 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1116_6_0001150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_6_0001150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-7cb7694a7366d0a6dfe2661451e747ceb80f17f908a39a52dce8a9d71b04592b3</originalsourceid><addsrcrecordid>eNqd0ctKBDEQBdAgCo6PhX8Q3Cm2Jv1Iut2J-ALBjYK7prpSrZGZZEgyip_kX5p2BPeucgMnFbjF2IEUp1JKdaZOhRBSNmKDzWRTiqJtmm6TzYSu6qKUQm6znRjfMipLoWbs67kI8MnjkjAFH9EvLXJryCU7WoRkveN-5DEFsI6DM1NcYVoFKgaIZHig6B04pMgnwSMFm_P0CDKDlA1CGLwrEF6IL_yccDWneM4vDCzAJXB0wtOHjevkMcErmfBzmX7E1ZDzHtsaYR5p__fcZU_XV4-Xt8X9w83d5cV9gVWpUqFx0KqrQVdKGQHKjFQqJetGkq410tCKUeqxEy1UHTSlQWqhM1oOom66cqh22eF6ro_J9hFtInxF71xuqJetbOtWZ3S0RphLi4HGfhnsAsJnL0U_LaJX_e8isj1e22nWT6P_w-8-_MF-acbqG5ysmc8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Willey, Trevor M. ; Lee, Jonathan R. I. ; Brehmer, Daniel ; Paredes Mellone, Oscar A. ; Landt, Lasse ; Schreiner, Peter R. ; Fokin, Andrey A. ; Tkachenko, Boryslav A. ; de Meijere, Armin ; Kozhushkov, Sergei ; van Buuren, Anthony W.</creator><creatorcontrib>Willey, Trevor M. ; Lee, Jonathan R. I. ; Brehmer, Daniel ; Paredes Mellone, Oscar A. ; Landt, Lasse ; Schreiner, Peter R. ; Fokin, Andrey A. ; Tkachenko, Boryslav A. ; de Meijere, Armin ; Kozhushkov, Sergei ; van Buuren, Anthony W. ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Novel nanocarbons such as fullerenes, nanotubes, graphene, and nanodiamond reside at the cutting edge of nanoscience and technology. Along with chemical functionalization, geometric constraints (such as extreme curvature in nanotubes or defects within or at the surfaces of diamond nanoparticles) significantly alter the electronic states of the nanocarbon material. Understanding the effects of steric strain on the electronic structure is critical to developing nanoelectronic applications based on these materials. This paper presents a fundamental study of how strain affects the electronic structure in a benchmark series of some fundamental saturated carbon cage compounds. Adamantane, C10H16, the smallest diamondoid and arguably the smallest nanodiamond crystallite, has carbon atoms essentially commensurate with diamond lattice positions and possesses by far the least molecular strain of this series. Twistane also is a C10H16 isomer but the fixed cyclohexane twist conformation of the central ring introduces additional strain into the cage. Octahedrane [(CH)12] and cubane [(CH)8] are considerably more strained, culminating in cubane where carbon–carbon bonds lie either parallel or orthogonal to one another. Using gas-phase near-edge x-ray absorption fine structure spectroscopy to probe the unoccupied electronic states, we observe two major progressions across this series. First, a broad C–C σ* resonance in the absorption splits into two more narrow and intense resonances with increasing strain. Second, the first manifold of states previously associated with tertiary C–H σ* in the diamondoid series appears to broaden and shift to lower energy. This feature is more than twice as intense in cubane than in octahedrane, even though these two molecules have only tertiary carbons, with the chemical formula (CH)x. The spectral differences are entirely due to the shape of the molecules; in particular, in cubane, the features arise from a high degree of p-p interaction between parallel C–C bonds. In contrast to the conventional wisdom that near-edge x-ray absorption is primarily an atomically localized spectroscopy, molecular shape and associated strain lead to the dominant features in spectra acquired from this fundamental series of carbon cage structures.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/6.0001150</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><publisher>United States: American Vacuum Society / AIP</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; Carbon ; Carbon K edge spectroscopy ; Diamond X-ray spectroscopy ; Gas phase ; Isomerism ; MATERIALS SCIENCE ; Molecular geometry ; Nanoclusters ; Near edge X-ray absorption fine structure spectroscopy ; X-ray absorption spectroscopy</subject><ispartof>Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2021-09, Vol.39 (5)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-7cb7694a7366d0a6dfe2661451e747ceb80f17f908a39a52dce8a9d71b04592b3</citedby><cites>FETCH-LOGICAL-c326t-7cb7694a7366d0a6dfe2661451e747ceb80f17f908a39a52dce8a9d71b04592b3</cites><orcidid>0000-0002-4488-6742 ; 0000-0002-5140-0720 ; 0000-0002-3608-5515 ; 0000-0002-1862-5266 ; 0000-0002-8711-3985 ; 0000-0001-7230-9638 ; 0000-0002-9667-8830 ; 0000-0002-0659-4976 ; 0000-0001-7316-7643 ; 0000-0002-6381-8948 ; 0000000296678830 ; 0000000206594976 ; 0000000287113985 ; 0000000236085515 ; 0000000172309638 ; 0000000251400720 ; 0000000244886742 ; 0000000263818948 ; 0000000173167643 ; 0000000218625266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,791,882,4498,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1818487$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Willey, Trevor M.</creatorcontrib><creatorcontrib>Lee, Jonathan R. I.</creatorcontrib><creatorcontrib>Brehmer, Daniel</creatorcontrib><creatorcontrib>Paredes Mellone, Oscar A.</creatorcontrib><creatorcontrib>Landt, Lasse</creatorcontrib><creatorcontrib>Schreiner, Peter R.</creatorcontrib><creatorcontrib>Fokin, Andrey A.</creatorcontrib><creatorcontrib>Tkachenko, Boryslav A.</creatorcontrib><creatorcontrib>de Meijere, Armin</creatorcontrib><creatorcontrib>Kozhushkov, Sergei</creatorcontrib><creatorcontrib>van Buuren, Anthony W.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane</title><title>Journal of vacuum science & technology. A, Vacuum, surfaces, and films</title><description>Novel nanocarbons such as fullerenes, nanotubes, graphene, and nanodiamond reside at the cutting edge of nanoscience and technology. Along with chemical functionalization, geometric constraints (such as extreme curvature in nanotubes or defects within or at the surfaces of diamond nanoparticles) significantly alter the electronic states of the nanocarbon material. Understanding the effects of steric strain on the electronic structure is critical to developing nanoelectronic applications based on these materials. This paper presents a fundamental study of how strain affects the electronic structure in a benchmark series of some fundamental saturated carbon cage compounds. Adamantane, C10H16, the smallest diamondoid and arguably the smallest nanodiamond crystallite, has carbon atoms essentially commensurate with diamond lattice positions and possesses by far the least molecular strain of this series. Twistane also is a C10H16 isomer but the fixed cyclohexane twist conformation of the central ring introduces additional strain into the cage. Octahedrane [(CH)12] and cubane [(CH)8] are considerably more strained, culminating in cubane where carbon–carbon bonds lie either parallel or orthogonal to one another. Using gas-phase near-edge x-ray absorption fine structure spectroscopy to probe the unoccupied electronic states, we observe two major progressions across this series. First, a broad C–C σ* resonance in the absorption splits into two more narrow and intense resonances with increasing strain. Second, the first manifold of states previously associated with tertiary C–H σ* in the diamondoid series appears to broaden and shift to lower energy. This feature is more than twice as intense in cubane than in octahedrane, even though these two molecules have only tertiary carbons, with the chemical formula (CH)x. The spectral differences are entirely due to the shape of the molecules; in particular, in cubane, the features arise from a high degree of p-p interaction between parallel C–C bonds. In contrast to the conventional wisdom that near-edge x-ray absorption is primarily an atomically localized spectroscopy, molecular shape and associated strain lead to the dominant features in spectra acquired from this fundamental series of carbon cage structures.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Carbon</subject><subject>Carbon K edge spectroscopy</subject><subject>Diamond X-ray spectroscopy</subject><subject>Gas phase</subject><subject>Isomerism</subject><subject>MATERIALS SCIENCE</subject><subject>Molecular geometry</subject><subject>Nanoclusters</subject><subject>Near edge X-ray absorption fine structure spectroscopy</subject><subject>X-ray absorption spectroscopy</subject><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0ctKBDEQBdAgCo6PhX8Q3Cm2Jv1Iut2J-ALBjYK7prpSrZGZZEgyip_kX5p2BPeucgMnFbjF2IEUp1JKdaZOhRBSNmKDzWRTiqJtmm6TzYSu6qKUQm6znRjfMipLoWbs67kI8MnjkjAFH9EvLXJryCU7WoRkveN-5DEFsI6DM1NcYVoFKgaIZHig6B04pMgnwSMFm_P0CDKDlA1CGLwrEF6IL_yccDWneM4vDCzAJXB0wtOHjevkMcErmfBzmX7E1ZDzHtsaYR5p__fcZU_XV4-Xt8X9w83d5cV9gVWpUqFx0KqrQVdKGQHKjFQqJetGkq410tCKUeqxEy1UHTSlQWqhM1oOom66cqh22eF6ro_J9hFtInxF71xuqJetbOtWZ3S0RphLi4HGfhnsAsJnL0U_LaJX_e8isj1e22nWT6P_w-8-_MF-acbqG5ysmc8</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Willey, Trevor M.</creator><creator>Lee, Jonathan R. I.</creator><creator>Brehmer, Daniel</creator><creator>Paredes Mellone, Oscar A.</creator><creator>Landt, Lasse</creator><creator>Schreiner, Peter R.</creator><creator>Fokin, Andrey A.</creator><creator>Tkachenko, Boryslav A.</creator><creator>de Meijere, Armin</creator><creator>Kozhushkov, Sergei</creator><creator>van Buuren, Anthony W.</creator><general>American Vacuum Society / AIP</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4488-6742</orcidid><orcidid>https://orcid.org/0000-0002-5140-0720</orcidid><orcidid>https://orcid.org/0000-0002-3608-5515</orcidid><orcidid>https://orcid.org/0000-0002-1862-5266</orcidid><orcidid>https://orcid.org/0000-0002-8711-3985</orcidid><orcidid>https://orcid.org/0000-0001-7230-9638</orcidid><orcidid>https://orcid.org/0000-0002-9667-8830</orcidid><orcidid>https://orcid.org/0000-0002-0659-4976</orcidid><orcidid>https://orcid.org/0000-0001-7316-7643</orcidid><orcidid>https://orcid.org/0000-0002-6381-8948</orcidid><orcidid>https://orcid.org/0000000296678830</orcidid><orcidid>https://orcid.org/0000000206594976</orcidid><orcidid>https://orcid.org/0000000287113985</orcidid><orcidid>https://orcid.org/0000000236085515</orcidid><orcidid>https://orcid.org/0000000172309638</orcidid><orcidid>https://orcid.org/0000000251400720</orcidid><orcidid>https://orcid.org/0000000244886742</orcidid><orcidid>https://orcid.org/0000000263818948</orcidid><orcidid>https://orcid.org/0000000173167643</orcidid><orcidid>https://orcid.org/0000000218625266</orcidid></search><sort><creationdate>20210901</creationdate><title>X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane</title><author>Willey, Trevor M. ; Lee, Jonathan R. I. ; Brehmer, Daniel ; Paredes Mellone, Oscar A. ; Landt, Lasse ; Schreiner, Peter R. ; Fokin, Andrey A. ; Tkachenko, Boryslav A. ; de Meijere, Armin ; Kozhushkov, Sergei ; van Buuren, Anthony W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-7cb7694a7366d0a6dfe2661451e747ceb80f17f908a39a52dce8a9d71b04592b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Carbon</topic><topic>Carbon K edge spectroscopy</topic><topic>Diamond X-ray spectroscopy</topic><topic>Gas phase</topic><topic>Isomerism</topic><topic>MATERIALS SCIENCE</topic><topic>Molecular geometry</topic><topic>Nanoclusters</topic><topic>Near edge X-ray absorption fine structure spectroscopy</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willey, Trevor M.</creatorcontrib><creatorcontrib>Lee, Jonathan R. I.</creatorcontrib><creatorcontrib>Brehmer, Daniel</creatorcontrib><creatorcontrib>Paredes Mellone, Oscar A.</creatorcontrib><creatorcontrib>Landt, Lasse</creatorcontrib><creatorcontrib>Schreiner, Peter R.</creatorcontrib><creatorcontrib>Fokin, Andrey A.</creatorcontrib><creatorcontrib>Tkachenko, Boryslav A.</creatorcontrib><creatorcontrib>de Meijere, Armin</creatorcontrib><creatorcontrib>Kozhushkov, Sergei</creatorcontrib><creatorcontrib>van Buuren, Anthony W.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of vacuum science & technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willey, Trevor M.</au><au>Lee, Jonathan R. I.</au><au>Brehmer, Daniel</au><au>Paredes Mellone, Oscar A.</au><au>Landt, Lasse</au><au>Schreiner, Peter R.</au><au>Fokin, Andrey A.</au><au>Tkachenko, Boryslav A.</au><au>de Meijere, Armin</au><au>Kozhushkov, Sergei</au><au>van Buuren, Anthony W.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane</atitle><jtitle>Journal of vacuum science & technology. A, Vacuum, surfaces, and films</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>39</volume><issue>5</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>Novel nanocarbons such as fullerenes, nanotubes, graphene, and nanodiamond reside at the cutting edge of nanoscience and technology. Along with chemical functionalization, geometric constraints (such as extreme curvature in nanotubes or defects within or at the surfaces of diamond nanoparticles) significantly alter the electronic states of the nanocarbon material. Understanding the effects of steric strain on the electronic structure is critical to developing nanoelectronic applications based on these materials. This paper presents a fundamental study of how strain affects the electronic structure in a benchmark series of some fundamental saturated carbon cage compounds. Adamantane, C10H16, the smallest diamondoid and arguably the smallest nanodiamond crystallite, has carbon atoms essentially commensurate with diamond lattice positions and possesses by far the least molecular strain of this series. Twistane also is a C10H16 isomer but the fixed cyclohexane twist conformation of the central ring introduces additional strain into the cage. Octahedrane [(CH)12] and cubane [(CH)8] are considerably more strained, culminating in cubane where carbon–carbon bonds lie either parallel or orthogonal to one another. Using gas-phase near-edge x-ray absorption fine structure spectroscopy to probe the unoccupied electronic states, we observe two major progressions across this series. First, a broad C–C σ* resonance in the absorption splits into two more narrow and intense resonances with increasing strain. Second, the first manifold of states previously associated with tertiary C–H σ* in the diamondoid series appears to broaden and shift to lower energy. This feature is more than twice as intense in cubane than in octahedrane, even though these two molecules have only tertiary carbons, with the chemical formula (CH)x. The spectral differences are entirely due to the shape of the molecules; in particular, in cubane, the features arise from a high degree of p-p interaction between parallel C–C bonds. In contrast to the conventional wisdom that near-edge x-ray absorption is primarily an atomically localized spectroscopy, molecular shape and associated strain lead to the dominant features in spectra acquired from this fundamental series of carbon cage structures.</abstract><cop>United States</cop><pub>American Vacuum Society / AIP</pub><doi>10.1116/6.0001150</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4488-6742</orcidid><orcidid>https://orcid.org/0000-0002-5140-0720</orcidid><orcidid>https://orcid.org/0000-0002-3608-5515</orcidid><orcidid>https://orcid.org/0000-0002-1862-5266</orcidid><orcidid>https://orcid.org/0000-0002-8711-3985</orcidid><orcidid>https://orcid.org/0000-0001-7230-9638</orcidid><orcidid>https://orcid.org/0000-0002-9667-8830</orcidid><orcidid>https://orcid.org/0000-0002-0659-4976</orcidid><orcidid>https://orcid.org/0000-0001-7316-7643</orcidid><orcidid>https://orcid.org/0000-0002-6381-8948</orcidid><orcidid>https://orcid.org/0000000296678830</orcidid><orcidid>https://orcid.org/0000000206594976</orcidid><orcidid>https://orcid.org/0000000287113985</orcidid><orcidid>https://orcid.org/0000000236085515</orcidid><orcidid>https://orcid.org/0000000172309638</orcidid><orcidid>https://orcid.org/0000000251400720</orcidid><orcidid>https://orcid.org/0000000244886742</orcidid><orcidid>https://orcid.org/0000000263818948</orcidid><orcidid>https://orcid.org/0000000173167643</orcidid><orcidid>https://orcid.org/0000000218625266</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-2101 |
ispartof | Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2021-09, Vol.39 (5) |
issn | 0734-2101 1520-8559 |
language | eng |
recordid | cdi_scitation_primary_10_1116_6_0001150 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | ATOMIC AND MOLECULAR PHYSICS Carbon Carbon K edge spectroscopy Diamond X-ray spectroscopy Gas phase Isomerism MATERIALS SCIENCE Molecular geometry Nanoclusters Near edge X-ray absorption fine structure spectroscopy X-ray absorption spectroscopy |
title | X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20spectroscopic%20identification%20of%20strain%20and%20structure-based%20resonances%20in%20a%20series%20of%20saturated%20carbon-cage%20molecules:%20Adamantane,%20twistane,%20octahedrane,%20and%20cubane&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Willey,%20Trevor%20M.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2021-09-01&rft.volume=39&rft.issue=5&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/6.0001150&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1116_6_0001150%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |