Classical momentum gap for electron transport in vacuum and consequences for space charge in thermionic converters with a grid electrode

Quantum mechanics tells us that the bound states of a potential well are quantized—a phenomenon that is easily understandable based on wave properties and resonance. Here, the authors demonstrate a classical mechanism for the formation of a momentum gap in the phase space of electrons traveling as p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science and technology. B, Nanotechnology & microelectronics Nanotechnology & microelectronics, 2016-07, Vol.34 (4)
Hauptverfasser: Khoshaman, Amir H., Nojeh, Alireza
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of vacuum science and technology. B, Nanotechnology & microelectronics
container_volume 34
creator Khoshaman, Amir H.
Nojeh, Alireza
description Quantum mechanics tells us that the bound states of a potential well are quantized—a phenomenon that is easily understandable based on wave properties and resonance. Here, the authors demonstrate a classical mechanism for the formation of a momentum gap in the phase space of electrons traveling as particles in a potential well in vacuum. This effect is caused by the reflection of electrons from at least two potential maxima, which may, for instance, exist due to space-charge distribution in a triode configuration. This gap plays a critical role in space-charge-mitigated electron transport in vacuum, such as in a thermionic energy converter with a positively biased grid, where it is shown that the current density can be increased by 1–3 orders of magnitude depending on the severity of space charge in the absence of the grid.
doi_str_mv 10.1116/1.4958801
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1116_1_4958801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_4958801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-4d6497ff9372198e3edd1437f4a913b9ee83c928919e4e31b2b7d600cfbfb7c83</originalsourceid><addsrcrecordid>eNqd0M1OwzAMAOAIgcQ0duANcgWpI2myNjmiiT8JiQucqzRxtqA2KUk2xBvw2HRswB1f7MNnWzZC55TMKaXVFZ1zuRCC0CM0KWlVFWW94Me_Na9O0SylVzJGJRaEkQn6XHYqJadVh_vQg8-bHq_UgG2IGDrQOQaPc1Q-DSFm7DzeKr0ZkfIG6-ATvG3Aa0jfHWlQGrBeq7iCnc1riL0L3umd3ULMEBN-d3mNFV5FZ352GDhDJ1Z1CWaHPEUvtzfPy_vi8enuYXn9WOhSylxwU3FZWytZXVIpgIExlLPaciUpayWAYFqWQlIJHBhty7Y2FSHatrattWBTdLGfq2NIKYJthuh6FT8aSprdFxvaHL442su9TdpllcdD_oe3If7BZjCWfQHG6YOv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classical momentum gap for electron transport in vacuum and consequences for space charge in thermionic converters with a grid electrode</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Khoshaman, Amir H. ; Nojeh, Alireza</creator><creatorcontrib>Khoshaman, Amir H. ; Nojeh, Alireza</creatorcontrib><description>Quantum mechanics tells us that the bound states of a potential well are quantized—a phenomenon that is easily understandable based on wave properties and resonance. Here, the authors demonstrate a classical mechanism for the formation of a momentum gap in the phase space of electrons traveling as particles in a potential well in vacuum. This effect is caused by the reflection of electrons from at least two potential maxima, which may, for instance, exist due to space-charge distribution in a triode configuration. This gap plays a critical role in space-charge-mitigated electron transport in vacuum, such as in a thermionic energy converter with a positively biased grid, where it is shown that the current density can be increased by 1–3 orders of magnitude depending on the severity of space charge in the absence of the grid.</description><identifier>ISSN: 2166-2746</identifier><identifier>EISSN: 2166-2754</identifier><identifier>DOI: 10.1116/1.4958801</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><ispartof>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics, 2016-07, Vol.34 (4)</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-4d6497ff9372198e3edd1437f4a913b9ee83c928919e4e31b2b7d600cfbfb7c83</citedby><cites>FETCH-LOGICAL-c299t-4d6497ff9372198e3edd1437f4a913b9ee83c928919e4e31b2b7d600cfbfb7c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,792,4500,27911,27912</link.rule.ids></links><search><creatorcontrib>Khoshaman, Amir H.</creatorcontrib><creatorcontrib>Nojeh, Alireza</creatorcontrib><title>Classical momentum gap for electron transport in vacuum and consequences for space charge in thermionic converters with a grid electrode</title><title>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics</title><description>Quantum mechanics tells us that the bound states of a potential well are quantized—a phenomenon that is easily understandable based on wave properties and resonance. Here, the authors demonstrate a classical mechanism for the formation of a momentum gap in the phase space of electrons traveling as particles in a potential well in vacuum. This effect is caused by the reflection of electrons from at least two potential maxima, which may, for instance, exist due to space-charge distribution in a triode configuration. This gap plays a critical role in space-charge-mitigated electron transport in vacuum, such as in a thermionic energy converter with a positively biased grid, where it is shown that the current density can be increased by 1–3 orders of magnitude depending on the severity of space charge in the absence of the grid.</description><issn>2166-2746</issn><issn>2166-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0M1OwzAMAOAIgcQ0duANcgWpI2myNjmiiT8JiQucqzRxtqA2KUk2xBvw2HRswB1f7MNnWzZC55TMKaXVFZ1zuRCC0CM0KWlVFWW94Me_Na9O0SylVzJGJRaEkQn6XHYqJadVh_vQg8-bHq_UgG2IGDrQOQaPc1Q-DSFm7DzeKr0ZkfIG6-ATvG3Aa0jfHWlQGrBeq7iCnc1riL0L3umd3ULMEBN-d3mNFV5FZ352GDhDJ1Z1CWaHPEUvtzfPy_vi8enuYXn9WOhSylxwU3FZWytZXVIpgIExlLPaciUpayWAYFqWQlIJHBhty7Y2FSHatrattWBTdLGfq2NIKYJthuh6FT8aSprdFxvaHL442su9TdpllcdD_oe3If7BZjCWfQHG6YOv</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Khoshaman, Amir H.</creator><creator>Nojeh, Alireza</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201607</creationdate><title>Classical momentum gap for electron transport in vacuum and consequences for space charge in thermionic converters with a grid electrode</title><author>Khoshaman, Amir H. ; Nojeh, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-4d6497ff9372198e3edd1437f4a913b9ee83c928919e4e31b2b7d600cfbfb7c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khoshaman, Amir H.</creatorcontrib><creatorcontrib>Nojeh, Alireza</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khoshaman, Amir H.</au><au>Nojeh, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical momentum gap for electron transport in vacuum and consequences for space charge in thermionic converters with a grid electrode</atitle><jtitle>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics</jtitle><date>2016-07</date><risdate>2016</risdate><volume>34</volume><issue>4</issue><issn>2166-2746</issn><eissn>2166-2754</eissn><coden>JVTBD9</coden><abstract>Quantum mechanics tells us that the bound states of a potential well are quantized—a phenomenon that is easily understandable based on wave properties and resonance. Here, the authors demonstrate a classical mechanism for the formation of a momentum gap in the phase space of electrons traveling as particles in a potential well in vacuum. This effect is caused by the reflection of electrons from at least two potential maxima, which may, for instance, exist due to space-charge distribution in a triode configuration. This gap plays a critical role in space-charge-mitigated electron transport in vacuum, such as in a thermionic energy converter with a positively biased grid, where it is shown that the current density can be increased by 1–3 orders of magnitude depending on the severity of space charge in the absence of the grid.</abstract><doi>10.1116/1.4958801</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2166-2746
ispartof Journal of vacuum science and technology. B, Nanotechnology & microelectronics, 2016-07, Vol.34 (4)
issn 2166-2746
2166-2754
language eng
recordid cdi_scitation_primary_10_1116_1_4958801
source AIP Journals Complete; Alma/SFX Local Collection
title Classical momentum gap for electron transport in vacuum and consequences for space charge in thermionic converters with a grid electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20momentum%20gap%20for%20electron%20transport%20in%20vacuum%20and%20consequences%20for%20space%20charge%20in%20thermionic%20converters%20with%20a%20grid%20electrode&rft.jtitle=Journal%20of%20vacuum%20science%20and%20technology.%20B,%20Nanotechnology%20&%20microelectronics&rft.au=Khoshaman,%20Amir%20H.&rft.date=2016-07&rft.volume=34&rft.issue=4&rft.issn=2166-2746&rft.eissn=2166-2754&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.4958801&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_4958801%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true